INSTRUCTION MANUAL

AUTOMATIC SYNCHRONIZER

<u>ASY-96-A1</u>

(Synchronous closing acceleration function. $\pm 0.05 \text{Hz})$

<u>ASY-96-A2</u>

(Synchronous closing acceleration function. \pm 0.02Hz)

DAIICHI ELECTRONICS CO., LTD.

The following rules and warnings must be followed during handling the product. This instruction manual contains important information to prevent injury to person and damage on the product. Read entire instruction manual before handling the product.

1. Installation environment

- Do not install the product in the following environment.
- (1) Place where ambient temperature exceeds 50° C.
- (2) Place where humidity level exceeds 90% RH.
- (3) Place where dust or corrosive gases exist.
- (4) Place where vibrate or have impact.
- (5) Place where are subjected to direct sunlight, rain or drop water.
- (6) Place where have much noise.
- 2. Installation and wirings

Read entire instruction manual, and the installation and wirings must be carried out by a qualified person only. The followings must be followed for the installation and wiring works.

- (1) Check phase sequence and voltage balance.
- (2) Separate power circuit and control/signal circuit wirings, and prevent noise around the product.
- (3) Connect grounding wire to earthing terminal (terminal 9).

WARNING

- 1) Wirings must be carried out exactly in accordance with wiring diagram.
- 2) Inproper wiring may result in damage on the product, fire and electric shock.
- 3) The power must be turned off before installation and wiring works.
- 4) Terminal cover must be attached after the installation and wirings.

3. Operation

Only qualified persons are to install, operate and maintenance.

- Read entire instruction manual and followed proper operation described in the manual.
- (1) Do not touch the product under synchronism check operation condition.
- (2) Please impress an auxiliary supply after establishing voltage (AC·DC80~143V).
- If auxiliary supply is used out of the change range, a possibility of carrying out malfunction will arise. (3) In after a synchronous control end, an auxiliary supply and an AC input (bus voltage, generator voltage)
- should give me non-voltage and a control input (an automatic synchronous start, manual synchronous start) as OFF. However, although an AC input and an auxiliary supply are convenient also with owner voltage, please give an auxiliary supply as change within the limits (AC·DC80~143V).
- The SLOW side closing specification input is convenient with ON.
- (4) Contact capacity of control signal (optical MOS-FET relay) is DC100V, 50mA or DC24V, 100mA. Please attach the element which absorbs back starting voltage generated at the time of opening and closing in the coil of the relay used outside.
- (5) At the case of the wave which is doing inverter control and a wave with a large distortion factor, frequency measurement and phase difference measurement may become abnormal.

4. Setting

Setting must be carried out carefully in accordance with the instruction manual.

- The followings must be followed during the setting.
- (1) Switch must be covered by switch cover during the synchronism check operation condition or after the setting by an operator.
- (2) The auxiliary power must be off before the setting.
- (3) In case of improper setting, the control function will stop and alarm will be on. Change the setting within allowable setting range.
- 5. Maintenance and check.

Please give maintenance and check regularly. Please refer to this instruction manual at that occasion.

If there was a trouble, please check troubleshooting in reference.

CONTENTS

1. Description ·····	3
2. Feature ·····	3
3. Functions ·····	3
 4. Specification and performance 4. 1 Specification 4. 2 Performance 	4 5
 5. Control function 5. 1 Control range 5. 2 Control input and description 5. 3 Control output and contents 	6 6 6
 6. Operation 6. 1 Before auxiliary supply apply 6. 2 After auxiliary supply apply 6. 3 Automatic synchronous control 6. 4 Manual synchronous control 	7 7 7 8
7. Handling 7. 1 Dimension diagram 7. 2 Mounting and remove of product 7. 3 Connection 7. 4 Precaution for operation 7. 5 Setting method 7. 6 Setting example 7. 7 Display 7. 8 Error management 7. 9 Troubleshooting	10 11 11 12 14 15 16
8. Simulation test ·····	17
9. Target for synchronous closing	17
 10. Principle of operation 10. 1 Block-diagram 10. 2 Operating explanation 	18 19
 11. Maintenance and check 11.1 Maintenance and check 11.2 Countermeasures against troubles 	19 19

1. Description

This is a control device to carry out a synchronous closing safely and smooth in operation of generators in parallel connections. At time of parallel connection, each voltage and frequency are checked and when the difference is within a given value, closing signal is given to circuit breaker ahead of the synchronous point, accounting on advancing breaking time, so that the circuit breaker (CB) can be closed at an exact synchronous point. This unit has also functions of synchronous check signal (indication only) and synchronous detecting indication.

2. Feature

- (1) High quality, high reliability by CPU adoption.
- (2) Lightweight, compact size and space saving, being about 1/6 only compared with ordinary device in mounting space.
- (3) Numerous in kinds of indication; 3 points for measurement indication and 10 points for status indication.
- (4) Simple setting from front side. Numerous setting values, yet very simple in setting.
- (5) Synchronous detection by single-phase circuit, both in bus input and generator input.
- (6) Auto / Manual synchronous switching function is provided.
- (7) Reverse power preventive function is effective at time of recovery of the receiving power by "SLOW" side closing command ($F_B > F_G$).
- (8) A power supply is always changed into ON state by separating an AC input and an auxiliary supply. The stable power supply which is not influenced by the input can be supplied.

3. Functions

 Voltage balancing function. Control pulse output is given so that bus voltage (VB) and generator voltage (VG) can be stayed within a given range. (60R, 60L) Pulse width is Vpw set value and pulse cycle becomes Vpint set value.

(2) Advancing function.

Control pulse output is given so that bus frequency (FB) and generator frequency (FG) can stay within a given range. (15R, 15L) Pulse width is Fpw set value and pulse cycle becomes "1/input frequency difference". It outputs at 180° of phase difference.

- (3) Synchronous check signal function. (±15°).
 When voltage difference (ΔV) of a bus and a generator and frequency difference (ΔF) enter in a regulation value and the phase difference becomes less than ±15° further, ±15° LED lights up. (Note) There is no ±15° control output.
- (4) Synchronous closing function.

After voltage difference (ΔV) between bus and generator and after frequency difference (ΔF) between them become within a given value, CB closing signal (25) is output ahead of synchronous point, accounting on advancing time of closing, so that CB can be closed at synchronous point. "ON" time of closing signal (25) is the advancing time plus 200ms. After a closing signal output, in case there is no phase shift (10°) for 3 seconds, it becomes a synchronizing success. It becomes an END indication and all control is stop. In case a phase shift (10°) is in 3 seconds, it becomes a synchronizing closing failure.

{NOTE> This product calculates the time to a synchronous point from change of the phase difference, a synchronous closing signal is outputted. For this reason, in case a frequency difference is less than 0. 04Hz (a frequency difference is less than 0. 01Hz by the case of ± 0.02 Hz specification) in the case of ± 0.05 Hz specification, an input signal is not outputted even if the phase difference is 0° (in phase). However, because ± 0.02 Hz of accuracy of a frequency difference is contained. in case of ± 0.05 Hz

specification, it is set to less than 0.06Hz (the case of ± 0.02 Hz specification to less than 0.03Hz) at the case of the maximum accuracy.

(5) Alarm function.

When synchronous closing is failed 3 times continuously, alarm "LED" turns on about one second afterwards and contact signal is output. After alarm is outputted, when there is a control start, ΔF , ΔV , and $\pm 15^{\circ}$ (Only indication) control action are continued. A CB closing signal (25) is not outputted. Synchronous closing failure is in the condition that the phase difference between bus side and generator side exceeds 15°. Alarm is released at no voltage or synchronous start (both of auto and manual) is "OFF".

- (6) Setting function. Voltage difference, frequency difference, advance time, pulse width / cycle of each control can be set.
- (7) Synchronous closing acceleration function. When the frequency difference of change of the phase difference decreases within ±0.05Hz * (in case of ±0.05Hz specification), in order to promote a synchronous closing, a governor pulse signal is automatically outputted after about 3 seconds.
 - * (In case of \pm 0.02Hz specification, with in \pm 0.02Hz)

4. Specification and performance

4.1 Specification

4.1.1 Input, Auxiliary supply, Output, Indication

	Specification				
(Single-phase)	AC110V, 50/60Hz, 0.5VA				
	AC110V, 50/60Hz, 0.5VA				
s start (AUTO)	1a contact input.				
tart (MANUAL)	Switching voltage and current. DC12V, 10mA				
mmand (SLOW)	(Please use a very small signal relay.)				
	AC+DC80~143V AC100/110V 50/60Hz Below 4.5VA				
	AC*DC8079145V DC100/110V, DC125V Below 2.5W				
1	Optical MOS-FET relay				
	DC100V, 50mA or DC24V, 100mA				
-					
• • •	$\langle NOTE \rangle$ A synchronous check signal (±15°)				
	is nothing.				
(25)					
	Green				
	Red 7 2 color LED				
	Green _ 2 color LEB				
-	Red 7 2 Color LED				
-	Green Green				
	Green				
gnal (±15°)	Amber				
	Green				
- (///)	Green				
(ALARM)	Red				
	Amber LED (synchronous point, color:Green)				
	A total of 26 points / 360° indication.				
	(15° interval 24 points, and before or after a				
<u> </u>	synchronous point 7.5° interval 2 points)				
$\frac{v_{\rm G} - v_{\rm B}}{110} \times 100(\%)$	Green 7 Segment LED: - C. C.				
	(% indication to AC110V)				
$E_{C} = E_{R} (H7)$	Green 7 Segment LED : — 🗔. 🔲 Hz				
specification)	-0. 05Hz < \Delta F < +0. 05Hz				
	t (Single-phase) us start (AUTO) start (MANUAL)				

4.1.2 Setting value.

- Voltage difference (ΔV) setting. (By rotary cord switch 1) Setting range: 1, 2, 3, 4, 5, 7, 10%. But 100% at AC110V. Factory setting at time of delivery: 5%.
- 2) Voltage adjusting pulse width setting. (By rotary cord switch 2) Setting range: 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0 seconds. Factory setting at time delivery: 0.5 seconds.
- Voltage adjusting pulse cycle setting. (Rotary cord switch 3) Setting range: 1, 2, 3, 4, 5 seconds. Factory setting at time delivery: 2 seconds.
- 4) Frequency difference (△F) setting. (By rotary cord switch 4) Setting range : 0. 1, 0. 15, 0. 2, 0. 25, 0. 3Hz. Factory setting at time delivery : 0. 1Hz.
- 5) Governor control pulse width setting (By rotary cord switch 5) Setting range: 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0 seconds. Factory setting time at delivery: 0.5 seconds.
- 6) CB advancing time setting (By 5 bits dip switch) Setting range: 10, 20, 40, 80, 160ms. (Setting value in total sum when switch is "ON") Factory setting at time of delivery: 50ms.

(Note) There is a limit in CB advancing time setting, depending on frequency difference (ΔF).

Frequency difference setting (\triangle F)	CB advancing time setting range
0.1 Hz	10~310ms
0. 15Hz	10~210ms
0. 2 Hz	10~150ms
0. 25Hz	10~100ms
0. 3 Hz	10~ 80ms

\Note> ERROR (E3) will indicate when setting is out of range.

4.2 Performance

4.2 Pertorm	ltem		Specification and performance				
	Voltage difference	±0.5%					
-	Frequency difference	±0.02Hz					
	Pulse width	±50ms					
Accuracy	Voltage adjustment pulse cycle	±10%+(10~	200ms)				
100001005	Phase difference detection	±1°					
-	Synchronous-closing phase						
	accuracy	±5°					
	Affect of temperature	It is the in	side of tolerance at 23±20℃				
	Affect of frequency		side of tolerance at ± 3 Hz to a bus rated frequency.				
Charac-	Affect of voltage		side of tolerance at AC90~125V				
teristic	Affect of auxiliary supply		side of tolerance at AC·DC80~143V				
	Other	JIS C 1111 : 1	1989 conformity				
		AC input	1.5 times 10 seconds, 1.2 times continuous of rated voltage				
	Over voltage strength	Aur oundu	1.5 times 10 seconds (10 times of 10 seconds interval) of				
		Aux. supply	AC·DC100/110V. AC·DC143V continuous.				
			Between electric circuit collective and outer case (Earth).				
		Above $30M\Omega$	Between auxiliary supply terminal and AC input, control				
	Insulation resistance	at DC500V	input, control output terminal.				
		megger.	Between AC input and control input, control output terminal.				
			Between input terminal and control output terminal.				
			Between electric circuit collective and outer case (Earth).				
		AC2000V	Between auxiliary supply terminal and AC input, control				
	Withstand voltage	(50/60Hz)	input, control output terminal.				
		1 minute	Between AC input and control input, control output terminal.				
			Between input terminal and control output terminal.				
	Impulse withstand voltage	5kV 1.2×50µs Positive negative Between electric circuit general					
		polarity for each 3 times and a case (Earth).					
			impulse noise				
		The indicate and control output error that $1\mus,100\text{ns}$ width add noise to					
		repeatedly 5 minute,					
Strength		Auxiliary supply (Normal / common) Over 1.5kV Bus side input, generator side input (Normal / common) Over 1.5kV					
		Control output (Common) Over 1.0kV					
		Oscillatory surge voltage					
		The indicate and control output error that 2kV add attenuation nature					
		oscillatory wave type to repeatedly,					
	Naina annaitu	Auxiliary supply (Normal / common)					
	Noise-capacity	Bus side input, generator side input (Normal / common)					
		Control output (Common)					
		Wave noise					
		The indicate and control output error irradiate wave of 150, 400, 900MHz					
		band in 5W, 1m a intermittent continuation, Electrostatic noise					
		± 8 kV(Apply): An indication and a control output should not carry out					
		a malfunction. ± 10 kV(Not apply) : There need to be no bad conditions, such as					
		breakage of parts.					
		Shock 294m/s ²	² (30G), X, Y, Z direction for each 3 times to the right and				
	Shock	contrary.					
F		Malfunction: 16. 7Hz, double vibration 1mm					
	Vibration	X, Y, Z orie	ntation for each 10 minutes.				
Operation	temperature and humidity range		90% RH (Non condensing)				
Storage temperature range		-10~+70°C					
JUJUOU LU							
Case color		Black (Munse About 1kg	II N1. 5)				

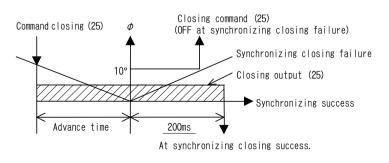
5. Control function

5.1 Control range

Bus voltage : AC90~125V Generator voltage : More than AC80V Bus frequency : 50±3Hz, 60±3Hz Frequency difference: Less than ±4Hz <Note> Control will stop at other ranges than above and indicate "ERROR" for each.

5.2 Control input and description. (1a contact, Switching voltage / current DC12V, 10mA)

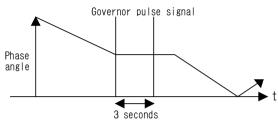
()) Automatic synchronous start and manual synchronous start.							
	Start	input	Output					
	Automatic synchronous Manual synchronous		Output					
Γ	ON OFF		Output of 60R/60L, 15R/15L. 25.					
Γ	OFF ON		Measurement indication, $\pm 15^\circ$ (LED indication)					
	OFF OFF		Only POWER LED is turned on.					
	ON ON		E8:Start input designating mistake (Repeat designate)					


(Note) Under above condition, ON is terminal short-circuiting. OFF is terminal open. It switches to automatic shell manual operation during control. Please turn on manual operation after turning off automatic more 1 second.

(2) Generator SLOW side closing designation.

ON (Terminal short-circuit): Closing from SLOW side. (F_B>F_G)

OFF (Terminal open): Random closing direction. (FB>FG or FB<FG)


- 5.3 Control output and contents
 - (1) Voltage balance function (60R, 60L) A control pulse is outputted in order that bus voltage (VB) and generator voltage (VG) may be put into regulation within the limits.
 - (2) Advancing function (15R, 15L) A control pulse is outputted in order that bus frequency (F_B) and generator frequency (F_G) may be put into regulation within the limits.
 - (3) Frequency difference signal within setting value (ΔF). When frequency difference continues over 1 second, within setting value (ΔF), LED of ΔF turns on. Hysteresis 0.02Hz (turns on under 0.1Hz in case of ΔF=0.1Hz). Return (turn on → turn off) will be over ΔF+0.02Hz (turns off at 0.12Hz in case of ΔF=0.1Hz).
 - (4) Voltage difference signal within setting value (ΔV). When voltage difference comes in within setting value (ΔV), ΔV of LED turns on. Hysteresis 0.5% (turns on within 4.5% in case of $\Delta V = 5\%$)
 - (5) Synchronous check signal ($\pm 15^{\circ}$). When voltage and frequency difference are within the setting value and phase difference within $\pm 15^{\circ}$, $\pm 15^{\circ}$ LED turns on. (There is no $\pm 15^{\circ}$ control output)
 - (6) CB closing signal (25).

After voltage and frequency difference comes in Within the setting value, CB closing signal (25) is output ahead of synchronous point, accounting on CB closing advancing time and "LED" (25) turns on. CB closing signal (25) must be set at "OFF" after the advancing time + 200ms. After a closing signal output, in case there is no phase shift (10°) for 3 seconds, it becomes a synchronizing success. It becomes an END indication and all control is stop. In case a phase shift (10°) is in 3 seconds, it becomes a synchronizing closing failure. (7) Synchronous failure signal (ALARM).

When synchronous closing is failed 3 times continuously, alarm LED turns on about 1 second afterward and contact is output. After alarm is outputted, when there is a control start, ΔF , ΔV , and $\pm 15^{\circ}$ (Only indication) control action are continued. A CB closing signal (25) is not outputted. Synchronous failure is in the case when phase difference at both of bus and generator side exceeds 15° , though CB closing signal (25) is output. Alarm can be released at auxiliary supply no voltage or synchronous start (both of auto and manual) is "OFF".

(8) Synchronous closing speed-up function.

When phase difference comes smaller within ± 0.05 Hz (At the time of ± 0.05 Hz specification, or ± 0.02 Hz at the time of ± 0.02 Hz specification) governor pulse signal is automatically output about 3 seconds. Afterward in order to make the closing speed up. Governor pulse signal is signal 15L at "SLOW" side closing designation, and signal 15R is output at "SLOW" side closing non-designation.

 \pm 0.05Hz specification (0 \sim \pm 0.05Hz of frequency differences) \pm 0.02Hz specification (0 \sim \pm 0.02Hz of frequency differences)

- 6. Operation
- 6.1 Before auxiliary supply apply.
 - ① The wiring confirmation of all signals must be carried out at no voltage condition. Input LINE side: Bus voltage (Receiving power) Input GENERATOR side: Generator voltage
 - © Change of each setting value must be made before auxiliary supply apply or before control start (Refer to item 7.5 in page 12).

The change after control is started is not possible. The control will stop and indicate "ERROR" (E3).

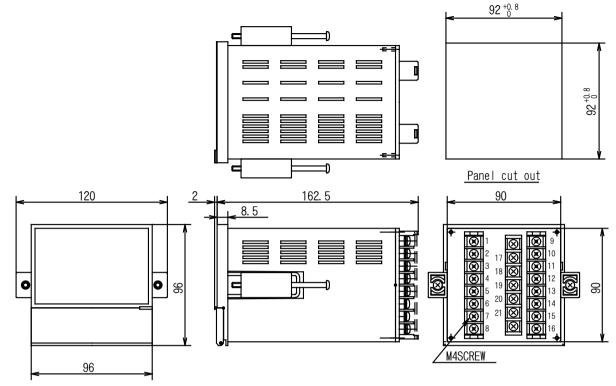
- 6.2 After auxiliary supply apply.
 - ① "POWER LED" (Green) turns on when auxiliary supply apply.
 - ② Change of each setting value must be made before the auxiliary supply apply or before control start. (Refer to item 7.5 in Page 12). The change after control is started is not possible. The control will stop and indicate "ERROR" (E3).
 - ③ When voltage and frequency are within the control range, indication of phase difference "LED" turns on around in the speed according to the frequency difference. 7 segment "LED" of voltage ($\triangle V$) and frequency ($\triangle F$) will indicate the difference (Refer to item 5.1 in Page 6)
- 6.3 Automatic synchronous control
- 6.3.1 In case of synchronous closing from bus (receiving side) to generator.
 - ① Under the bus voltage input condition (AC90~125V) and after the generator voltage is stable (More than AC80V), automatic synchronous is done. Under unstable voltage condition, the control will stop and indicate "ERROR" (E5). (Will automatically return when the voltage comes in within the range.)
 - ② In case the voltage and frequency are within the control range (Refer to item 5.1 in page 6), phase difference "LED" indication will rotate in the speed according to the frequency difference. 7 segment "LED" will indicate the difference of voltage (ΔV) and frequency (ΔF).
 - ③ "60R,60L" output will control the difference of bus and generator voltage within the setting range (ΔV). "LED" ΔV turns on within the range.
 - ④ "15R, 15L" output will control the difference of bus and generator voltage within the setting range (Δ F). "LED" Δ F turns on within the range.
 - (5) In case the phase difference is at synchronous point $\pm 15^{\circ}$ under the setting range in both voltage and frequency difference, synchronous check signal ($\pm 15^{\circ}$) is "LED" turns on. (There is no $\pm 15^{\circ}$ control output)
 - (6) CB closing signal (25) will be output ahead of synchronous point, accounting on the advancing time of the CB closing and "LED" turns on, in order to close the CB at synchronous point under the setting range in both voltage and frequency difference. The CB closing signal (25) turns off after the advancing time plus 200ms. (In case of closing mistake, it will turn off at ±15°, when it comes up to ±15° within 200ms.)

- 6.3.2 In case of synchronous closing from generator to bus (receiving).
 - ① Automatic synchronous start can be done under the bus voltage input condition (AC90~125V) and "SLOW" side closing designation (more than AC80V in generator voltage) is input. The control will stop under unstable voltage condition in the generator side and "ERROR" (E5) will be indicated. (Will automatically return at when it comes in within the range.)
 - <Note> Reverse power prevention is possible by "SLOW" side closing designation, in the receiving side at the time of synchronous closing.)
 - ② In case of the voltage and frequency within the control range (Refer to item 5.1 in page 6), phase difference "LED" indication will rotate in the speed according to the frequency difference. 7 segment "LED" will indicate the difference of voltage (ΔV) and frequency (ΔF).
 - ③ "60R,60L" output will control the difference of bus and generator voltage within the setting range (ΔV). "LED" ΔV turns on within the range.
 - ④ "15R, 15L" output will control the difference of bus and generator voltage within the setting range (Δ F). "LED" Δ F turns on within the range.
 - (5) In case the phase difference is at synchronous point $\pm 15^{\circ}$ under the setting range in both voltage and frequency difference, synchronous check signal ($\pm 15^{\circ}$) is "LED" turns on. (There is no $\pm 15^{\circ}$ control output)
 - © CB closing signal (25) will be output ahead of synchronous point, accounting on the advancing time of the CB closing and "LED" turns on, in order to close the CB at synchronous point under the setting range in both voltage and frequency difference. The CB closing signal (25) turns off after the advancing time plus 200ms. (In case of closing mistake, it will turn off at ±15°, when it comes up to ±15° within 200ms.)

6.4 Manual synchronous control.

- 6.4.1 In case of synchronous closing form generator to bus (receiving).
 - ① Manual synchronous start can be done under the bus voltage input condition (AC90~125V) after generator voltage (more than AC80V) is stable. The control will stop under unstable voltage condition and indicate "ERROR" (F5). (Will automatically return when it comes in within the range.)
 - ② In case voltage and frequency are within the control range (refer to item 5.1 in page 6), phase difference indication "LED" will rotate (in the speed according to the frequency difference. 7-segment "LED" will indicate
 - ③ Voltage difference of bus and generator can be manually controlled within the setting range ($\triangle V$). ""LED" ($\triangle V$) turns on within the range.
 - ④ Frequency difference of bus and generator can be manually controlled within the setting range (△F). ""LED" (△F) turns on within the range.
 - (5) In case the phase difference is at synchronous point $\pm 15^{\circ}$ under the setting range in the voltage and frequency difference, synchronous check signal ($\pm 15^{\circ}$) is "LED" turns on. (There is no $\pm 15^{\circ}$ control output)
 - © CB closing signal (25) is manually output ahead of the synchronous point, accounting on the advancing time as well as manual response, in order to close the CB at synchronous point within the setting range.
- 6.4.2 In case of synchronous closing from bus to generator.
 - ① Manual synchronous start can be input under bus (receiving) voltage input condition (AC90~125V) and "SLOW" side closing designation (more than AC80V in generator voltage) is input. The control will stop under unstable voltage condition in the generator side and "ERROR" (E5) will indicate. (Automatically returns when it comes in within the range.)
 - ② In case the voltage and frequency are within the control range (refer to item 5.1 in page 6), phase difference "LED" indication will rotate in the speed according to the frequency difference. 7-segment "LED" indicates the difference of voltage (ΔV) and frequency (ΔF).
 - ③ Voltage difference of bus and generator can be manually controlled within the setting value ($0 \sim + \Delta V$). "LED" (ΔV) turns on within the range.
 - (4) Frequency difference of bus and generator can be manually controlled within the setting value (0 \sim + Δ F). "LED" (Δ F) turns on within the range.
 - \bigcirc In case the phase difference is at synchronous point $\pm 15^{\circ}$ under the setting range in the voltage and frequency difference, synchronous check signal ($\pm 15^{\circ}$) is "LED" turns on. (There is no $\pm 15^{\circ}$ control output)
 - © CB closing signal (25) is manually output ahead of the synchronous point, accounting on the advancing time and manual response, in order to close the CB at synchronous point under the setting range.
 - KNote> Closing must be done from "SLOW" side in order to prevent the reverse power from the receiving side.

- 6.4.3 Timing of a auxiliary supply, bus voltage, generator voltage, control start. Please carry out on the following conditions.
 - ① A control input is started, after it apply bus voltage and generator voltage simultaneously and more than 1 seconds pass, where an auxiliary supply is apply.
 - <Note> Only in an auxiliary supply and a control start, the outside of the bus voltage range is displayed (E4).
 - ② An auxiliary supply, bus voltage, and generator voltage are apply simultaneously, and a control input is started after more than 3 seconds pass.


No.	ltem	Contents
	LED indication	POWER LED (Green) * Turn on
	Auxiliary supply	More than 3 seconds
1	Bus side input (V _B)	
	Generator side input (V _G)	More than 1 second
	Control start	
	LED indication	POWER LED (Green) * Turn on
	Auxiliary supply	
2	Bus side input (V _B)	
	Generator side input (V _G)	
	Control start	More than 3 seconds

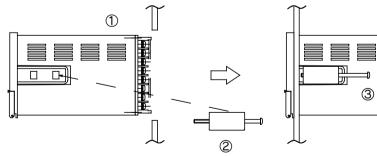
* According to setting conditions and input conditions, a measurement indication and the state indication LED are outputted.

It does not become operation abnormalities in case an auxiliary supply, input (bus side, generator side), and control start are applied simultaneously. In consideration of the control start in a power supply stable period, it may be more than 3 seconds.

7. Handling

7.1 Dimension diagram

(Note) This container and spacing with the equipment that is next give a panel cut to for more than 27mm.

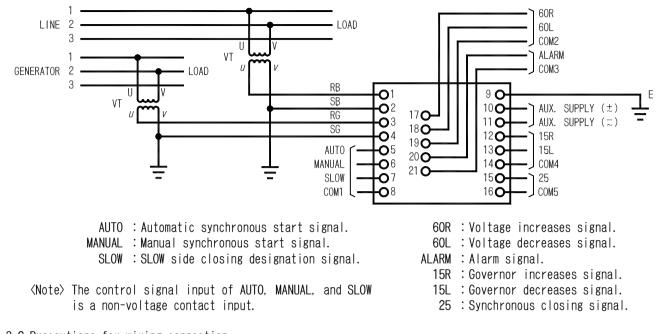

■ Installation environment condition

Installation selects a place suit lower account of environment condition. The place that the vibration that is mechanical and dust and corrosive gas are few. Place that there is not affect of strong electromagnetic field by large current bus and saturable core reactor.

7.2 Mounting and remove of product

(1) Mounting

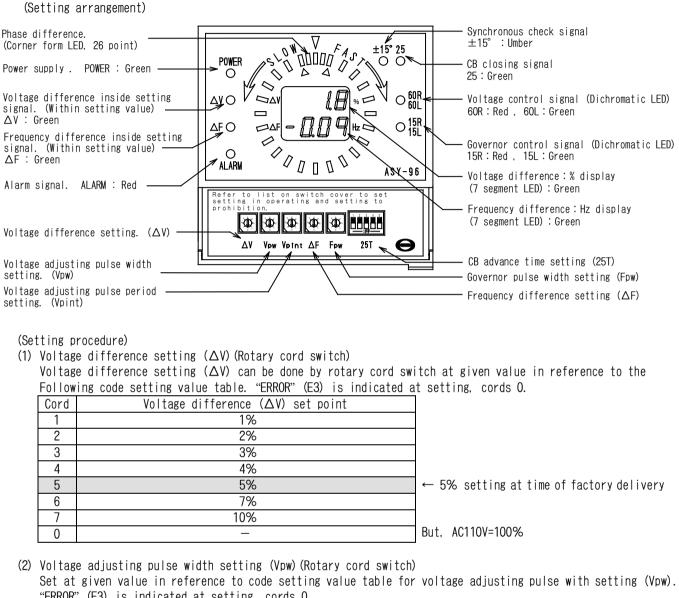
- ① They insert a product than the front of panel.
- ② They mount attached install tool a hole of product side in panel rear face. (Right and left, 2 places) (A hole of product side set and have pawl of install tool mounted to terminal side.
- ③ They tighten screw of install tool in a plus driver and they fix a product. (Right and left, 2 places) Binding fast torque: 0.59~1.08N·m (6~11kg·cm). Recommendation binding fast torque: 0.88N·m(9kg·cm) (They don't close only one side when they close screw, and please close screw in turn. And please use screw lock agent when they can mount location to be accompanied by vibration.


(2) Remove way

They carry out an mount way and reverse work. When mount tool is hard to come off, take off it in the next point. After have loosen a screw. They put a head of screw to direction of main frame (①) and they begin to put it on the front (②).

7.3 Connection

7.3.1 Connection diagram



- 7.3.2 Precautions for wiring connection
 - Set terminal cover for safety, without fail, after finish of the wiring connection.
 - Earth terminal "E" (No. 9) must be grounded, without fail, to increase shielding effect.
 - Separate the wiring both at power source side and signal side, without fail. Care must be paid for noise.
- 7.4 Precautions for operation
- 7.4.1 Input and output signal.
 - (1) Input and output terminals are provided with a cover. Set this cover, for safety, without fail, after finish of the wiring connection. Do not touch the terminals during the operating condition.
 - (2) Control signal input is no voltage contact. Do not input the voltage signal. In case of setting an external relay for control signal input, select the relay good enough for minimum applicable load (mA) DC12V, 10mA in switching voltage and current.
 - (3) Switching capacity of control output (optical MOS-FET relay) is DC100V, 50mA or DC24V, 100mA. An element must be set on the coil of the relay in order to absorb counter voltage at time of switching.
- 7.4.2 Precautions at time of start of operation
 - (1) Auxiliary supply input must be input after the voltage (AC·DC80~143V) is stable. Operating failure may happen under unstable range of the power when increasing the voltage.
 - (2) Control input latch is not provided, so that it must be always short circuit at time of selection.
- 7.4.3 Precautions during start of operation
 - (1) Change of setting during operating condition is not possible. Auxiliary supply and control start input (automatic and manual synchronous start) must be "OFF". There is no problem if the closing designation input is kept at "ON" condition.
 - (2) Please turn on manual operation after turning off automatic more than 1 second, when switching to automatic shell manual operation during operation.
 - It is also the same as when switching automatically from manual operation.
 - (3) Do not touch the device during operation. It will cause failure in operation.
- 7.4.4 Precautions after finish of synchronous control

As a rule, auxiliary supply, AC input (bus voltage and generator voltage) after finish of synchronous control must be no voltage and control input (auto and manual synchronous start) must be "OFF". There is no problem if the closing designation input at "SLOW" side is kept at "ON" condition.

7.5 Setting method

Setting must be carried out in reference to the setting arrangement as below. Setting must be carried out at no voltage (both of bus voltage and generator voltage) or control start at "OFF" position (both of auto and manual synchronous start). "ERROR" (E3) will indicate at other setting condition and the control will stop. Reset can be done at no voltage or at control start (both of auto and manual synchronous start "OFF").

"ERROR"	' (E3) is indicated at setting, cords 0.	_
Cord	Voltage adjusting pulse width setting point (Vpw)	
1	0. 1s	
2	0. 2s	
3	0. 3s	1
4	0. 4s	1
5	0. 5s	•
6	0. 7s	1
7	1. Os	
0	_	

← 0.5s setting at time of factory delivery

(3) Voltage adjusting pulse cycle setting (Vpint) (Rotary cord switch)

Set at given value in reference to code setting value table. "ERROR" (E3) is indicated at setting, code 6, 7, and 0. Cord Voltage adjusting pulse cycle setting point (Vpint)

1	1s	
2	2s	← 2s setting at time of factory delivery
3	3s	
4	4s	
5	5s	
6	_	
7	_	
0	_	

(4) Frequency difference setting (ΔF) (Rotary cord switch).

Set at given value in reference to code setting value table. "ERROR" (E3) is indicated at setting, code 6, 7, and 0. Cord Frequency difference setting point (Δf)

COLO		
1	0.1 Hz	←
2	0. 15Hz	
3	0. 2 Hz	
4	0. 25Hz	
5	0. 3 Hz	
6	_	
7	_	
0	_	

- O.1Hz setting at time of factory delivery

(5) Governor control pulse width setting (Fpw) (Rotary cord switch).

Set at given value in reference to code setting value table. "ERROR" (E3) is indicated at setting, codes 0.

Cord	Governor control puise wiath (Fpw) set point	
1	0. 1s	
2	0. 2s	
3	0. 3s	
4	0. 4s	
5	0. 5s	← 0.5s setting at time of factory
6	0. 7s	delivery.
7	1. Os	
0	_	

(6) CB advancing time is setting (5 bits dip-switch).

Set at given value in reference to SW No. Set table. Advancing time is the sum at time that "SW" is "ON" condition. There is a limit in the advancing time setting, depending on setting of frequency difference (ΔF), in case it is set at out of the time of setting range. The control will stop and indicate "ERROR" (E3). (Refer to follows note)

SW No.	ON	0FF		CB advancing time setting value				
1			10ms	Advancing time is the sum of the time that "SW" is "ON" condition.				
2			20ms					
3			40ms	Advancing time = SW1 + SW2 + SW3 + SW4 + SW5				
4			80ms					
5			160ms					

Setting at time of factory delivery: 50ms under "ON" condition for SW1 and SW3.

In case of factory setting	at	SW1	and	SW2	for	50ms
----------------------------	----	-----	-----	-----	-----	------

SW No.	ON	0FF	CB advancing time setting		
1	0		10ms	Advancing time is the sum of the time that "SW" is "ON" condition.	
2			20ms		
3	0		40ms	Advancing time = SW1 + SW2 + SW3 + SW4 + SW5	
4			80ms	= 10 + 0 + 40 + 0 + 0 = 50ms	
5			160ms		

(Note) There is limit in advancing time setting, depending on frequency difference setting (Δ F).

Frequency difference (Δ F)	Setting
0.1 Hz	10~310ms
0. 15Hz	10~210ms
0. 2 Hz	10~150ms
0. 25Hz	10~100ms
0. 3 Hz	10~ 80ms

In case of setting at out of the time of the setting range, the control will stop and indicate "ERROR" (E3).

7.6 Setting example

- 7.6.1 Setting item
 - (1) Voltage difference (\triangle V)
 - \bigcirc Frequency difference (\triangle F)
 - ③ Voltage adjusting pulse width (Vpw)
 - ④ Voltage adjusting pulse cycle (Vpint)
 - ⑤ Governor pulse width (Fpw)
 - © CB advancing time (25T)

Setting item	Initial value	Setting example
Voltage difference (△V)	5%	2%
Frequency difference (△F)	0. 1Hz	0. 1Hz
Voltage adjusting pulse width (Vpw)	0. 5s	0. 5s
Voltage adjusting pulse cycle (Vpint)	2s	5s
Governor pulse width (Fpw)	0. 5s	0. 5s
CB advancing time (25T)	50ms	Range 10~310ms

7.6.2 Judgment of setting point

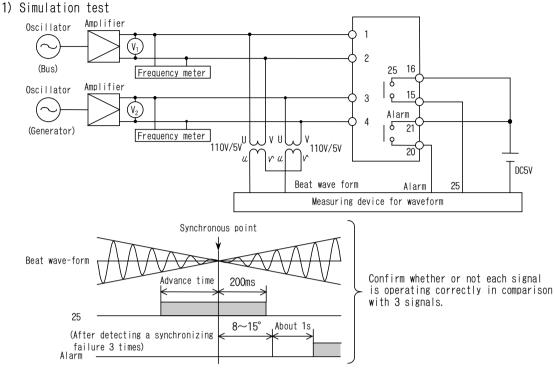
- ★① Voltage difference (Assumed $\Delta V=2\%$ at bus voltage 6600V) Control within $\pm 2\% = \pm 132V$ (6468 to 6732V) against bus voltage 6600V.
- ★② Voltage adjusting pulse width, pulse cycle (Assumed Vpw=0.5s, Vpint=5s) Voltage control resolution (voltage change per pulse) will be 200V×0.5s/6s=16.7V/pulse, when advancing time is 6s/200V. The change is 16.7V for every 5s, because of the pulse cycle being 5s.
- ★③ Frequency difference (Assumed \triangle F=0.1Hz.) Control within 0.1Hz=50Hz ±0.1Hz against bus frequency 50Hz.
- ★④ Governor pulse width (Assumed Fpw=0.5s.) Frequency control resolution (frequency change per pulse) will be 1Hz×0.5/15s=0.33Hz/pulse. The change is 0.33Hz for every 1/ΔF (s) because of the pulse cycle being 1/ΔF.
- ★ (5) CB advancing time (25T) $10 \sim 310$ ms at $\triangle F = 0.1$ Hz $10 \sim 150$ ms at $\triangle F = 0.2$ Hz $10 \sim 80$ ms at $\triangle F = 0.3$ Hz } This is the setting range.
- 7.6.3 Counter measure in case of unstable control condition.
 - When voltage control becomes hunting.

 Increase voltage difference (△V).
 Decrease voltage adjusting pulse width (Vpw).
 Increase voltage adjusting pulse cycle (Vpint). Change can be done by one of the above measures or their combined measures.
 - 2) When frequency control becomes hunting.
 ① Increase frequency difference (△F).
 ② Decrease governor pulse width (Fpw). Change can be done by one of the above measures or their combined measures.
 - 3) When voltage control delays.
 ① Increase voltage adjusting pulse width (Vpw).
 ② Decrease voltage adjusting pulse cycle (Vpint). Change can be done by one of the above measures or their combined measures.
 - When frequency control delays. Decrease governor pulse width (Fpw).

7.7 Display

(Ind	dication arrangement)				
	e difference. her form LED, 26 point)	– Synchronous check signal ±15° :Umber			
Power	r supply. POWER : Green	– CB closing signal 25:Green			
signa ∆V	age difference inside setting al. (Within setting value) : Green AFO	- Voltage control signal (Dichromatic LED) 60R:Red , 60L:Green			
sign	al. (Within setting value)	– Governor control signal (Dichromatic LED) 15R:Red , 15L:Green			
Alar	m signal. ALARM : Red	- Voltage difference:% display (7 segment LED):Green			
Volta	age difference setting. (ΔV)	- Frequency difference:Hz display (7 segment LED):Green			
sett Volta	age adjusting pulse width ing. (Vpw) age adjusting pulse period	- CB advance time setting (25T) - Governor pulse width setting (Fpw) - Frequency difference setting (ΔF)			
	(Measuring display)				
Pe	bltage difference (Δ V) indication (3-digit with polarity for indicat ercent (%) indication against AC 110V in generator voltage difference $\frac{V_G - V_B}{110} \times 100$ (%) V_B : Bus voltage V_G: Generator voltage Minus (-) Indication, when generator side is 1	e against bus voltage.			
	requency difference (ΔF) indication (3-digit with polarity for indic z indication in generator frequency difference against bus frequency. FG-FB FB: Bus frequency FG: Generator frequency Minus (-) indication, when generator side is lower comp				
Th at S	nase difference indication (LED: Amber. But, green for synchronous po ne phase difference of bus voltage and generator voltage is indicated. fter a synchronous point 7.5° interval 2 points SLOW;Generator side is lower compared with bus side in frequency. FAST;Generator side higher compared with bus side in frequency.				
	ication condition) Power supply (POWER) indication (LED:Green) "LED" turns on when auxiliary power input is apply.				
(2)	Voltage increase signal (60R) indication (LED:Red) "LED" turns on when voltage increase signal is output.				
(3)	Voltage decrease signal (60L) indication (LED:Green) "LED" turns on when voltage decrease signal is output.				
(4)	Governor increase signal (15R) indication (LED:Red) "LED" turns on when Governor increase signal is output.				
(5)	Governor decrease signal (15L) indication (LED:Green) "LED" turns on when governor decrease signal is output.				
(6)	 CB closing signal (25) indication (LED: Green) "LED" turns on when CB closing signal is output. 				
(7)	 ') Synchronous check signal (±15°) indication (LED: Amber) "LED" turns on when synchronous check signal (±15°) is output. 				
(8)	Voltage difference (Δ V) setting value signal (within setting value) "LED" turns on when voltage difference between bus and generator become				
(9)	Frequency difference setting (ΔF) value signal (within setting value "LED" turns on when frequency difference between bus and generator but	e) indication (LED:Green)			
(10)	Alarm (ALARM) indication (LED: Red) "LED" turns on about 1 second afterward when synchronous closing fai be done at no voltage or at control start position. ("OFF" at start o manual synchronous start.)	led continuously 3 times. Reset can			

7.8 Error management

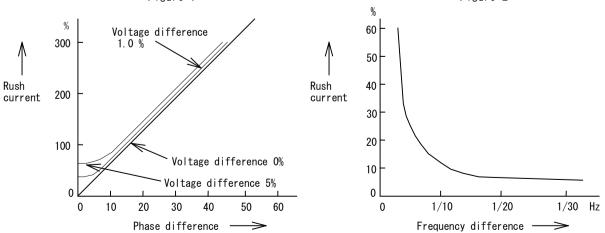

No.	Contents of error	Control status	Error output	Reset condition	Note
E1	ROM/RAM error	Stop	Alarm		Equipment trouble
E2	A/D error	Stop	Alarm		Equipment trouble
E3	Setting error	Stop		Auto return by reset	
E4	Out of range, bus voltage	Stop		Auto return	
E5	Out of range, generator voltage	Stop		Auto return	
E6	Out of range, bus frequency	Stop		Auto return	
E7	Out of range, frequency difference	Stop		Auto return	
E8	Error in start input designation (Repetition designation)	Stop		Auto return	
E9	Error in closing (3 times continuation)	Stop	Alarm	No input voltage or start OFF	

7.9 Troubleshooting

No.	Abnormal condition	Probable cause	Treatment	
1	POWER LED don't turn on	Auxiliary supply is not given.	Validation of auxiliary supply input	
		Defect in device	Exchange of device	
2	Figures of voltage and	Out of control range in voltage /	Confirm voltage and frequency of	
	frequency difference don't	frequency of bus and generator.	Bus and generator	
	indicate	Defect in device	Exchange of device	
	Automatic synchronous closing	Auto input (Automatic synchronous	Confirm auto input	
3	don't start	closing start) is not given		
		Defect in device	Exchange of device	
	Manual synchronous closing	Manual input (Manual synchronous	Confirm manual input	
4	don't start	closing start) is not given		
		Defect in device	Exchange of device	
		E1:ROM/RAM error	Defect in device,	
		E2:A/D error	Exchange of device	
		E3:Setting error	Confirm setting value and correct the value setting change during	
			operation is not possible.	
		E4:Out of range in bus voltage		
5	An error is indicated.	E5: Out of range in generator voltage	Confirm voltage range	
5	(E1~E9)	E6: Out of range in bus frequency		
		E7 : Out of range in generator frequency	Confirm frequency range	
		E8: Error in start input designation		
		(Repetition designation)	Confirm start input (Correction)	
		E9: Error in closing	<u> </u>	
		(3 times continuation)	Confirm output (25) or CB	
		AVR line, may be inferior if 60R, 60L is		
	Voltage don't balance	output	Confirm AVR line	
6	(LED $\triangle V$ don't turn on.)	Device may be defective if 60R, 60L is		
		not output	Exchange of device	
		Governor line, may be inferior if 15R,	Or a filling and the second second	
-	Frequency don't balance	15L is output	Confirm governor	
7	(LED △F don't turn on.)	Device may be defective if 15R, 15L is	Fuchange of device	
		not output	Exchange of device	
	Oleging signal dents indicate		Confirm closing conditions	
8	Closing signal don't indicate	Closing conditions are not proper	$(\triangle V \text{ and } \triangle F)$	
	(LED (25) don't turns on)	Device may be defective	Exchange of device	
	Synchronous check signal don't	$\triangle V$ and $\triangle F$ is not within range	Confirm $\triangle V$ and $\triangle F$	
9	indicate (LED of ±15° don't turn on)	Device may be defective	Exchange of device	
		Error may happen when synchronous	<u> </u>	
		closing	Confirm CB line	
10	Alarm is indicated	ROM/RAM error		
1		A/D error	Exchange of device	

8. Simulation test

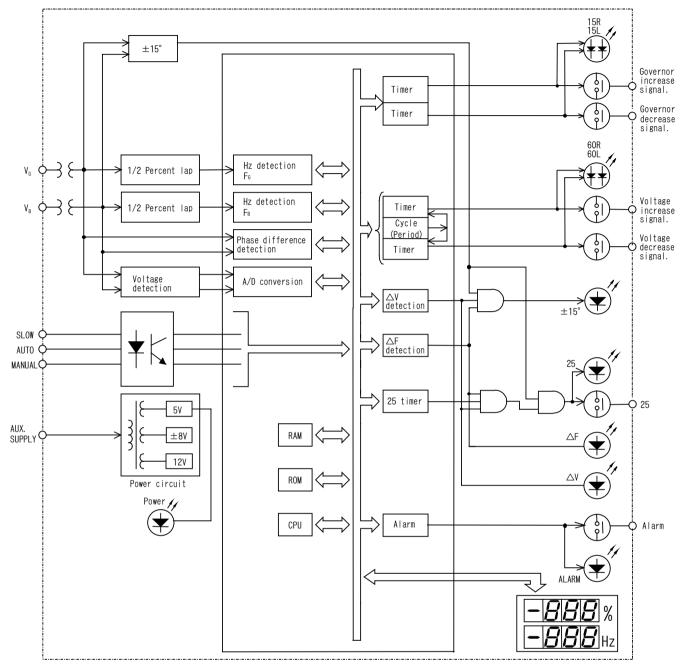
Quality of this device is fully confirmed, however, simulating test can be carried out under the following Guidance in order to avoid trouble in advance.


After giving voltage between bus input (between terminal 1-2) and generator input (between terminal 3-4) and when voltage difference and frequency difference are within the setting value (LED ΔF is "ON" and LED ΔV is "OFF") and the pulse difference between them becomes smaller, then signal (25) turns on.

Voltage difference $V_G \ge V_B$ + setting value : Voltage decrease signal (60L) turns on. Voltage difference $V_G \le V_B$ - setting value : Voltage decrease signal (60R) turns on. Frequency difference $F_G \ge F_B$ + setting value : Governor decrease signal (15L) turns on. Frequency difference $F_G \le F_B$ - setting value : Governor decrease signal (15R) turns on. Control will stop under the range out of $90V \le V_B \le 125V$, $80V \le V_G$ In case of $\pm 0.05Hz$ specification (It is within the limits of $\Delta F = 0 \sim 0.02Hz$ at in case of $\pm 0.02Hz$ specification) of synchronous-closing acceleration functional, within the limits of $\Delta F = 0 \sim 0.05Hz$, 15R (In SLOW side input designating, it is 15L) is outputted at intervals of 3 seconds.

Under above simulating test, closing command signal (25) is output 3 times continuously every phase at synchronous point, because bus voltage and generator voltage do not synchronize, it becomes synchronous failure (ALARM) and the control will stop.

9. Target for synchronous closing. (Reference data)


At time of synchronous closing, it is required to make voltage difference, frequency difference and phase difference smaller, so that the generator will not affect from shock and line disturbance by rush current. Figure 1

Rush current will be under 50% as a target for synchronous closing. Therefore, synchronous closing can be done under voltage difference 5%, frequency difference 0.1Hz or 0.2Hz and pulse difference 5° as the target.

10. Principle of operation

10.1 Block-diagram

10.2 Operating explanation

(1) Frequency control (Governor increase output, governor decrease output)

Bus voltage input (V_B) and generator voltage input (V_G) are input into frequency detecting circuit through wave-form adjusting circuit and dividing circuit, after isolation by a VT. In the frequency detecting circuit, AC cycle is counted and fed into data bus and the frequency is calculated by soft operation (1/cycle). Governor control pulse is output, so that frequency difference becomes within the setting value ($\pm \Delta F$) by the measured bus frequency and generator frequency. In case of bus frequency (F_B) > generator frequency, governor increase pulse (15R) is output and in case of bus frequency (F_B) < generator frequency difference being within the setting value ($\pm \Delta F$), the output will stop and LED ΔF (within setting value) turns ON.

(2) Voltage control (Voltage increase output, voltage decrease output)

Bus voltage input (VB) and generator voltage input (VG) are input into voltage detecting circuit after Isolation by VT. In the voltage detecting circuit, effective value (RMS value) of AC voltage is measured and fed into data-bus after A/D conversion. The voltage control pulse is output, so that the voltage difference becomes within the setting value $(\pm \Delta V)$ by the measured bus voltage and generator voltage. In case of bus voltage (VB) > generator voltage (VG), voltage increase pulse (60R) is output and in case of bus voltage (VB) < generator voltage (VG), voltage decrease pulse (60L) is output. In case of voltage difference being within the setting value $(\pm \Delta V)$, the output will stop and LED ΔV (within setting value) turns on.

(3) $\pm 15^{\circ}$ output

 $\pm 15^{\circ}$ output is LED $\pm 15^{\circ}$ turns on when phase difference is at $\pm 15^{\circ}$ of synchronous point, measured a pulse difference from the pulse range between input voltage zero cross point of generator voltage input (V_G) in the phase discrimination circuit by adjusted wave-from AC signal.

(4) 25 output

25 output will count phase width measured in phase discrimination circuit and fed into data bus and calculate the time to reach the synchronous point by soft operation {(pulse width/cycle) × (1/frequency difference)}. In case of frequency difference $\triangle F$ and voltage difference $\triangle V$ being within setting value and phase difference being within ±15° and when the time to reach at synchronous point corresponds with preset advancing time (25), closing signal (25) is output and LED (25) turns on at the same time.

- (5) Control input Control input is no voltage contact input. DC12V, 10mA is supplied from the internal control power of the device. The control input is fed to data-bus being isolated by photo-coupler.
- (6) Auxiliary supply Auxiliary supply (AUX.SUPPLY) is supplied to the circuit after voltage is stabilized at 5V, \pm 8V, 12V isolated by VT.

11. Maintenance and check

11.1 Maintenance and check

Maintenance should be done periodically in consideration of the following matters.

- 1) Confirm if power LED, status indication LED and figure indication is being indicated correctly.
- 2) Confirm always not to overlook alarm LED being indicated and alarm signal being output.
- 3) Check the color of LED if there is fading in color and damage in the case.
- 4) Check the wiring if there is looseness in connection and fixing of the screws.
- 5) Check dust on the device.

11.2 Countermeasures against troubles

If the unit is defective, it is repaired after it has been sent back to our company, in principle. In such a case, please contact the following address.

For a specifications change or other requests other than trouble repair, please contact the following address.

MANUFACTURER

DAIICHI ELECTRONICS CO., LTD.

Head Office	: 11-13 Hitotsuya 1-cyome, Adachi-ku, Tokyo, 121-8639 Japan.
	Telephone No. 03-3885-2411 FAX No. 03-3858-3966
Kyoto Office	: 1-19 Ichinobe-Nishikawahara, Jyoyou-shi, Kyoto, 610-0114 Japan. Telephone No. 0774-55-1391

Revision B, DATE: December 2, 2003