OVERVIEW

-Display from electrical signals, which are conversed from measurement of physical elements.
-Display 3 measuring elements at the same time. Combine with the system and monitor centrally via analog output or communication output.

FEATURES

- In 1 unit, possible to measure DC inputs of 3 circuits at the same time.
- Insulation: 2000V between inputs; 2000V between input and output.
- Possible to set the full scale of measuring value optionally.
-Possible to select from 18 kinds of units and set them display on LCD screen.
- Possible to display 1 bar graph and digital display of 3 measuring elements at the same time.
- Analog output (Max. 3 outputs) and Communication output are available.
-Possible to maintain Maximum and Minimum of measuring values.
- Use high quality, high contrast of LCD for display.
- Use high luminance of white backlight (in case of "with Backlight" option).

Possible to select light-on, light-off and brightness when setting.

TYPE NAME \& SPECIFICATION CODE

1. Without Backlight

Note

(1) Manufacturing ranges of Input:	
Standard range	1. Voltage Input: $\pm 50 \mathrm{mV} \sim \pm 300 \mathrm{~V}$ 2. Current Input: $\pm 500 \mu \mathrm{~A} \sim \pm 50 \mathrm{~mA}$
	1. Input is not the same as Rated Input 2. Current Input from $\pm 100 \mu \mathrm{~A} \sim \pm 499 \mu \mathrm{~A}$ (Digital display accuracy will change from $\pm 1.0 \% ~ t o ~$

(2) Manufacturing ranges of Analog Output:

Standard range	1. Voltage Output: $\pm 100 \mathrm{mV} \sim \pm 10 \mathrm{~V}$
	2. Current Output: $\pm 500 \mu \mathrm{~A} \sim \pm 20 \mathrm{~mA},-10 \mathrm{~mA}$
	3. Quantity of Output circuit is the same as Input circuit
	1. Output is not the same as Rated Output
	2. Quantity of Input is different Output (Ex. 3-Input $\rightarrow 1-$ Output)
	3. Current Output from $\pm 100 \mu \mathrm{~A} \sim \pm 499 \mu \mathrm{~A}$
	(Digital display accuracy will change from $\pm 0.5 \%$ to $\pm 1.0 \%)$

${ }^{(3)}$ In the case that quantity of Analog Output and Input are the same.

Equipment Specification

Connection	Input, Aux. power parts: by M4 Screw
	Reset Input (DI), Output parts: by M3 Screw
LCD Display	Main monitor: Text height 10mm 4 digits
	Sub-monitor (L): Text height 6mm 4 digits
	Sub-monitor (R): Text height 6 mm 4 digits
	Bar graph: 30 dots
Time of Display update	Approx. 1 sec (Bar graph: approx.0.25sec)
Measurement	DC Input 3 circuits
Operating Temperature/ Humidity	-10 to $+55^{\circ} \mathrm{C}$
	30 to 85% (No condensation)
Storage Temperature	-25 to $+70^{\circ} \mathrm{C}$
Material	ABS(V-0) Exterior Color: Black (Munsell N1.5)
Weight	520 g
Dimension	Refer to outline drawing (Compatible with wide angle analog meter)

-Auxiliary Power Specification

Power Consumption (With Backlight)	$\begin{aligned} & \hline \mathrm{AC} 85 \sim 253 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12VA
	DC80~143V	6W
	DC20~56V	7W
Power Consumption (No Backlight)	$\begin{aligned} & \hline \mathrm{AC} 85 \sim 253 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	10VA
	DC80~143V	5W
	DC20~56V	6W
Inrush Current (For With backlight \& No backlight dual use)	AC110V	5.2 A (approx. 1.7 ms)
	AC220V	10.4 A (approx. 1.7 ms)
	DC110V	3.7 A (approx. 1.7 ms)
	DC24V	5.5A (approx. 3.6 ms)
	DC48V	10.9A (approx. 3.6ms)

Output Specification

- Analog Output \quad Quantity: Maximum 3 Outputs	
Rated Output	$4 \sim 20 \mathrm{~mA}: 0-550 \Omega, 0 \sim 1 \mathrm{~mA}: 0-10 \mathrm{k} \Omega$
	$1 \sim 5 \mathrm{~V}: 600 \Omega$ or more, $0 \sim 5 \mathrm{~V}: 600 \Omega$ or more, $0 \sim 10 \mathrm{~V}: 2 \mathrm{k} \Omega$ or more
	(Select one of above)
	Non-insulation (minus common) between analog outputs
Response Time	Below 1 sec. Time to be within $\pm 1 \%$ of final constant value
Output Ripple	Under 1% p-p of output span

- Input Specification

Input	DC1~5V	Approx. 1M	DI (Max/ Min Value)	Input Specification	DI: Possible to reset Max/Min value when adding voltage signal; Input and Aux. power are the same value; Min. pulse width is 300 ms continuation.	
	DCO~5V			Power Consumption	AC, DC100/110V	0.4VA, 0.4 W
	DC0~10V				AC200/220V	1.4VA
	DC4~20mA	Approx. 50,			DC24V	0.3W
	DC0~1mA	Approx. 1k 2			DC48V	1.2W
	DC0~5mA	Approx. 200		Contact Capacity	AC, DC100/110V	3 mA
	DC0~10mA	Approx. 100			AC200/220V	6 mA
	DC0~16mA	Approx. 50Ω			DC24V	10 mA
	DC0~20mA				DC48V	20 mA

Communication Specification

• Protocol A	
Communication method	TIA-485-A Half-duplex 2-wire, Asynchronous communication
Transmission Speed	$1200 / 2400 / 4800 / 9600$ bps
Transmission Code	NRZ
Start bit	1 bit
Data length	$7 / 8$ bits
Parity	None / even / odd
Stop bit	1 bit / 2 bits
Cable length	1000 m (Fully extended)
Address	$1 \sim 254$
Quantity of connection	Can connect up to 31 units. In case of over 32 units, please use repeater (connect up to 254 units)
Transmission character	ASCII Code

• Modbus RTU
Communication method TIA-485-A Half-duplex 2-wire, Asynchronous communication Transmission Speed $4800 / 9600 / 19200 / 38400$ bps Transmission Code NRZ Start bit 1 bit Data length 8 bits Parity None / even / odd Stop bit 1 bit / 2 bits Cable length 1000 m (Fully extended) Address $1 \sim 247$ Quantity of connection Can connect up to 31 units. In case of over 32 units, please use repeater (connect up to 254 units) Transmission code Binary Error detection CRC-16 ($\mathrm{x}^{16+}+\mathrm{x}^{15}+\mathrm{x}^{2}+1$)

PERFORMANCE

Items		Measuring Range / Display Specification			Reference	
		Display	Output			
Standard			JIS C 1102-1,2,7,9:1997 JIS C 1111-1989 JIS C 1010-1 : 1998 TIA-485-A : 2003			
Digital Display	Display Range	-9999~9999	$\pm 1.0 \%$	$\pm 0.5 \%$	Any setting of number of digits \& decimal point location is possible	
	Power Factor $(\cos \varphi)$ Display	(1) LEAD $0.500 \sim 1.000 \sim$ LAG 0.500 (2) LEAD $0.000 \sim 1.000 \sim$ LAG 0.000	$\pm 1.0 \%$	$\pm 0.5 \%$	4 digits and decimal point location are fixed	
	Frequency Display	(1) $45.0 \sim 55.0 \mathrm{~Hz}$ or $45.00 \sim 55.00 \mathrm{~Hz}$ (2) $55.0 \sim 65.0 \mathrm{~Hz}$ or $55.00 \sim 65.00 \mathrm{~Hz}$ (3) $45.0 \sim 65.0 \mathrm{~Hz}$ or $45.00 \sim 65.00 \mathrm{~Hz}$	$\pm 1.0 \%$	$\pm 0.5 \%$	3 digits or 4 digits are fixed. decimal point location are fixed	
	Reactive Power Display (LEAD,LAG)	LEAD 9999~0~LAG 9999	$\pm 1.0 \%$	$\pm 0.5 \%$	Any setting of number of digits and decimal point location is possible	
Bar graph Display	Maximum Scale	10 Integer Multiple (10n) of 1, 1.2, 1.5, 1.6, 1.8, 2, 2.4, 2.5, 3, 3.2, 3.6, 4, 4.5, 4.8, 5, 6, 6.4, 7.2, 7.5, 8, 9, 9.6			Note: -9900 $\leqq \mathrm{N} \leqq 9900$ (Scale value $\times 10^{n}=\mathrm{N}$)	
	Power Factor ($\cos \varphi$) Display	(1) LEAD $0.5 \sim 1 \sim$ LAG 0.5 (2) LEAD 0~1~LAG 0			Scale value is fixed LEAD, LAG will display when power factor is selected.	
	Frequency Display	(1) $45 \sim 55 \mathrm{~Hz}$ (2) $55 \sim 65 \mathrm{~Hz}$ (3) $45 \sim 65 \mathrm{~Hz}$			Scale value is fixed	
	Reactive Power Display (LEAD,LAG)	LEAD $\square \sim 0 \sim L A G \square$ \square are the same as maximum value			Range: LEAD 9900~0~LAG 9900 LEAD, LAG will display when power factor is selected.	
Bar graph Display Accuracy		$\pm 5.0 \%$ (\% against span)				
Temperature Effect		Accuracy will not change when in $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$				
Time of Display update		Approx. 1 sec (Approx. 0.25 sec for bar graph)				
Display Setting Element	Main monitor	Element of Input 1~Input 3 (depend on Display pattern)				
	Sub-monitor (L)	Element of Input 1~Input 3 (depend on Display pattern)				
	Sub-monitor (R)	Element of Input 1~Input 3 (depend on Display pattern)				
	Bar graph	Element of Input 1~Input 3				
LCD view	Up-Low co-viewing	75° view for each Up, Low, Left, Right				
	Upper view	10° view for Up, 60° for Low, 60° for each Left, Right				
Warranty when power cut-off		Remain Max, Min and setting value				

UNIT DISPLAY

LCD only displays below 18 kinds of unit. If unit is not in this 18 kinds, we will use unit seal to stick on display screen.

LCD Display Units (18 Kinds)			Sticky seal Units (55 Kinds) (5)							
	Main monitor	Sub-monitor								
(1)	A	A	(1)	APm	(19)	L/h	(37)	Nm3/min	(55)	${ }^{\circ} \mathrm{C}$
(2)	kA	kA	(2)	bar	(20)	L/min	(38)	$\mathrm{N} / \mathrm{m}^{2}$		
(3)	V	V	(3)	cm	(21)	mA	(39)	$\mathrm{N} / \mathrm{mm}^{2}$		
(4)	kV	kV	(4)	$\cos \varphi$	(22)	mg / L	(40)	OPm		
(5)	W	-	(5)	ELm	(23)	min-1	(41)	Pa		
(6)	kW	-	(6)	Hz	(24)	$\mathrm{mL} / \mathrm{min}$	(42)	pH		
(7)	MW	-	(7)	J	(25)	mm	(43)	ppm		
(8)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	(8)	K	(26)	$\mathrm{m} / \mathrm{h}\left({ }^{4}\right)$	(44)	R		
(9)	\%	\%	(9)	kg	(27)	$\mathrm{m} / \mathrm{min}\left({ }^{4}\right)$	(45)	rad		
(10)	m	m	(10)	kg/h	(28)	m / s	(46)	rpm		
(11)	m^{3}	m^{3}	(11)	$\mathrm{kg} / \mathrm{m}^{2}$	(29)	mV	(47)	SPm		
(12)	$\mathrm{m}^{3} / \mathrm{h}$	$\mathrm{m}^{3} / \mathrm{h}$	(12)	$\mathrm{kg} / \mathrm{m}^{3}$	(30)	$\mathrm{m}^{3} / \mathrm{s}$	(48)	t		
(13)	$\mathrm{m}^{3} / \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{min}$	(13)	kL	(31)	MPa	(49)	t/h		
(14)	m / h	-	(14)	kN	(32)	Mvar	(50)	TPm		
(15)	$\mathrm{m} / \mathrm{min}$	-	(15)	kPa	(33)	MW (${ }^{4}$)	(51)	W (4)		
(16)	$\mathrm{r} / \mathrm{min}$	r/min	(16)	kvar	(34)	N	(52)	YPm		
(17)	min	min	(17)	kW (4)	(35)	$\mathrm{N} \cdot \mathrm{m}$	(53)	$\mu \mathrm{m}$		
(18)	no display	no display	(18)	L	(36)	Nm ${ }^{\text {/ }}$ h	(54)	$\mu \mathrm{S} / \mathrm{cm}$		

Note: (4) Possible for sticky seal unit only on sub-monitors. Main monitor will display by LCD.
${ }^{(5)}$ Letter height of sticky seal: 8.5 mm in main monitor, 5 mm in sub-monitor. Letter's color: gray (DIC $13^{\text {th }} 541$). Units of sticky seal are selected when ordering, and cannot be changed after purchased.

DIMENSIONS (Unit: mm)

CONNECTION DIAGRAM

ORDER INFORMATION

Please specify below information to order:
(1) Type name, Specification code
(2) Display Scales, Units

Please advise us the display scale and unit of each Input.
For Ex.: Input 1: $100.0^{\circ} \mathrm{C}$ Input 2: $60.0^{\circ} \mathrm{C}$ Input 3: $60.0^{\circ} \mathrm{C}$
(3) Display Patterns

Please refer page 10 and advise us the patterns (Display form) from 1 to 6.

PARTS NAME \& FUNCTION

SETTING

Note: (${ }^{8}$) Setting only for Backlight specification

Note: Setting mode is a little different in case of Communication Output specification

SETTING-2

Note: $\left({ }^{(6)}\right)$ There is no output in case that Analog Output is not selected

OVERVIEW

-Possible to monitor 3 measurements of Voltage (V), Current (A), Power (W), Energy (Wh) of DC circuits at the same time.
-Possible to combine with the system and monitor centrally via analog output or communication output.

FEATURE

- In 1 unit, possible to display 3 measurement at the same time.
- Possible to set your optional value on Full scale.
- By DC Current Input \& DC Voltage Input, Power (W, Wh) will be calculated to output and display.
- Insulation: 2000V between inputs; 2000V between input and output.

TLC-110 / 110L
$110 \times 110 \times 105 \mathrm{~mm}(520 \mathrm{~g})$

- Possible to check the display via bar graph like an analog meter.
- Possible to maintain Max.value and Min.value.
-High-Low Flicker setting is available (with setting index). Can use Flicker OFF setting to manage the index.
- 3 Analog Outputs or 2 Analog Outputs + 1 Pulse Output and communication output + 1 Pulse Output are available (option).
- Digital Input (DI - Reset Max.value \& Min.value) is available.
-Wide range of Aux. power: AC85-253V, DC80-143V are dual use; DC20-56V is also available.
-Possible to replace our 110 mm size Analog meter due to same form of installation on the panel (Installed by 2 screws).
- Use high quality, high contrast of LCD for display.
- Use high luminance of white backlight (in case of "with Backlight" option). Possible to select light-on, light-off and brightness setting.

TYPE NAME \& SPECIFICATION CODE

1. Without Backlight

2. With Backlight
(1)TLC-110L -

$\left.{ }^{(2}\right)$ Manufacturing range of DC Input:

Manufacturing range of DC Input:
Standard range 1. Current Input: $\pm 500 \mu \mathrm{~A} \sim \pm 50 \mathrm{~mA}$ 2. Voltage Input: $\pm 50 \mathrm{mV} \sim \pm 600 \mathrm{~V}$ Special range 1. Current Input from $\pm 100 \mu \mathrm{~A} \sim \pm 499 \mu \mathrm{~A}$ (Digital display accuracy will change from $\pm 1.0 \%$ to $\pm 1.5 \%)$ 2. Voltage Input is from $\pm 601 \mathrm{~V} \sim \pm 800 \mathrm{~V}$

(${ }^{3}$) Manufacturing range of Input for W, Wh measurement

Standard range	1. Current Input: $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ (output of Shunt, hole CT, \ldots) 2. Voltage Input: $\pm 5 \mathrm{~V} \sim \pm 600 \mathrm{~V}$
	1. Current Input: not the same as Rated Input 2. Voltage Input: $\pm 601 \mathrm{~V} \sim \pm 800 \mathrm{~V}$

In case that Current Input is over $\pm 50 \mathrm{~mA}$, please use with Shunt (purchase separately).

1) - For W, Wh Measuring, please select specification of Current (code 1~3) for Input 1,

Voltage (code $4 \sim 8$, Y)for input 2, select W ' for input 3 .

- For display form of W and $W h$, please select pattern $7 \sim J$.
- Current input is received from Shunt (we sell Shunt separately). In case of input not from Shunt,
or \pm input, please select code " Z ".

TLC-110/TLC-110L

Equipment Specification

Connection	Input, Aux. power parts: by M4 Screw
	Reset Input (DI), Output parts: by M3 Screw
LCD Display	Main monitor: Text height 10mm 4 digits
	Sub-monitor (L): Text height 6 mm 4 digits
	Sub-monitor (R): Text height 6 mm 4 digits
	Bar graph: 30 dots
Time of Display update	Approx. 1 sec (Bar graph: approx.0.25sec)
Measurement	DC Input 3 circuits, W (calculated), Wh (calculated)
Operating Temperature/	-10 to $+55^{\circ} \mathrm{C}$
Humidity	30 to 85% (No condensation)
Storage Temperature	-25 to $+70^{\circ} \mathrm{C}$
Material	ABS(V-0) \quad Exterior Color: Black (Munsell N1.5)
Weight	520 g
Dimension	Refer to outline drawing (Compatible with wide angle analog meter)

-Auxiliary Power Specification

Power Consumption (With Backlight)	$\begin{aligned} & \text { AC85~253V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12VA
	DC80~143V	6W
	DC20~56V	7W
Power Consumption (No Backlight)	$\begin{aligned} & \text { AC85~253V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	10VA
	DC80~143V	5W
	DC20~56V	6W
Inrush Current (For backlight \& no backlight dual use)	AC110V	5.2 A (approx. 1.7 ms)
	AC220V	10.4A (approx. 1.7ms)
	DC110V	3.7 A (approx. 1.7 ms)
	DC24V	5.5A (approx. 3.6 ms)
	DC48V	10.9A (approx. 3.6ms)

Input Specification

Input	$\begin{aligned} & \mathrm{DCO} \sim 50 \mathrm{mV} \\ & \mathrm{DCO} \sim 60 \mathrm{mV} \end{aligned}$	Approx. 1M Ω	DI (5) (Max) Min Value)	Input Specification	DI: Possible to reset Max/Min value when adding voltage signal; Input and Aux. power are the same value; Min. pulse width is 300 ms continuation.	
	DC0~ 100 mV				AC, DC100V/110V	0.4VA, 0.4W
	DC0~50V			Power	AC200V/220V	1.4VA
	DC0~75V			Consumption	DC24V	0.3W
	DC0~100V				DC48V	1.2W
	DC0~150V				AC, DC100V/110V	3 mA
	DC0~150V			Contact	AC200V/220V	6 mA
	DCO~200V			Capacity	DC24V	10 mA
	DC0 $\sim 1 \mathrm{~mA}$	Approx. 1kת			DC48V	20 mA

Output Specification

- Analog Output Quantity: Maximum 3 Outputs

Rated Output	$4 \sim 20 \mathrm{~mA}: 0-550 \Omega, 0 \sim 1 \mathrm{~mA}: 0-10 \mathrm{k} \Omega$, $1 \sim 5 \mathrm{~V}: 600 \Omega$ or more, $0 \sim 5 \mathrm{~V}: 600 \Omega$ or more, $0 \sim 10 \mathrm{~V}: 2 \mathrm{k} \Omega$ or more (Select one of above) Non-insulation (minus common) between analog outputs
Response Time	Below 1 sec. Time to be within $\pm 1 \%$ of final constant value
Output Ripple	Under 1% p-p of output span

- Pulse Output	Output element: DC Power (Wh)	
Output Method	Photo MOS-FET relay 1a contact (N.O. contact)	
Contact Capacity	AC, DC125V	
Pulse width	$250 \mathrm{~ms} \pm 10 \%$	
	$100 \sim 300 \mathrm{~ms}$ depending on setting range	

Unit of Pulse Output is possible to set by below range:

Multiplier	Unit of Pulse Output				For Ex. \leftarrow If multiplier 1 is selected, units of Pulse output can set as $10,1,0.1$, 0.01
0.1	1	0.1	0.01	0.001	
1	10	1	0.1	0.01	
10	100	10	1	0.1	
100	1000	100	10	1	
1000	(7) 10000	1000	100	10	

Setting range of multiplier is limited as below due to Power scale (VxA)

Voltage $(\mathrm{V}) \times$ Current (A)	
	$<100 \mathrm{~kW}$
$100 \mathrm{~kW} \leqq<1000 \mathrm{~kW}$	$\times 1, \times 1, \times 1, \times 10, \times 100, \times 1000$
$1000 \mathrm{~kW} \leqq<10000 \mathrm{~kW}$	$\times 10, \times 100, \times 1000$
$10000 \mathrm{~kW} \leqq$	$<100000 \mathrm{~kW}$

Note: $\left.\quad{ }^{6}\right)$ In case of Pulse period speed setting is more than 1 pulse/sec $\left(\frac{V \times A(k W)}{\text { Pulse output unit }} \geqq 3600\right)$, Pulse width is $100-130 \mathrm{~ms}$. It loads about 2 Hz when Pulse width is $250 \mathrm{~ms}, 4.5 \mathrm{~Hz}$ when Pulse width is $100-130 \mathrm{~ms}$.
(0 < Pulse output (Hz) < 2 Hz or 4.5 Hz)
${ }^{(7)}$ Because there are only 4 digits, unit 10000 of Pulse output will display: 9999

Communication Specification

- Protocol A

Communication method	TIA-485-A Half-duplex 2-wire, Asynchronous communication
Transmission Speed	$1200 / 2400 / 4800 / 9600$ bps
Transmission Code	NRZ
Start bit	1 bit
Data length	$7 / 8$ bits
Parity	None / even / odd
Stop bit	1 bit / 2 bits
Cable length	1000 m (Fully extended)
Address	$1 \sim 254$
Quantity of connection	Can connect up to 31 units. In case of over 32 units, please use repeater (connect up to 254 units)
Transmission character	ASCII Code

- Modbus RTU

Communication method	TIA-485-A Half-duplex 2-wire, Asynchronous communication
Transmission Speed	$4800 / 9600 / 19200 / 38400$ bps
Transmission Code	NRZ
Start bit	1 bit
Data length	8 bits
Parity	None / even / odd
Stop bit	1bit / 2 bits
Cable length	1000 m (Fully extended)
Address	$1 \sim 247$
Quantity of connection	Can connect up to 31 units. In case of over 32 units, please use repeater (connect up to 254 units)
Transmission code	Binary
Error detection	CRC-16 (x+16+x+15+2+1)

TLC-110/TLC-110L

- PERFORMANCE

Item		Measuring Range / Display Specification			Reference	
		Display	Output			
Standard			JIS C 1102-1,2,7,8,9 : 1997 JIS C 1111-1989 JIS C 1010-1 : 1998 TIA-485-A : 2003			
Digital Display	Display Range	-9999~9999	$\pm 1.0 \%$	$\pm 0.5 \%$	Any setting of number digits \& decimal point location is possible	
		in Wh measurement: $0 \sim 9999$, display up to $3^{r d}$ decimal digit.	$\pm 3.0 \%$	$\pm 3.0 \%$	When display is over 9999, it will continuously count from 0	
Bar graph Display	Maximum Scale	10 Integer Multiple (10n) of 1, 1.2, 1.5, 1.6, $1.8,2,2.4,2.5,3,3.2,3.6,4,4.5,4.8,5,6$, $6.4,7.2,7.5,8,9,9.6$	$\pm 5.0 \%$	-	\% against span Note: - $-9900 \leqq \mathrm{~N} \leqq 9900$ (Scale value $\times 10^{n}=\mathrm{N}$)	
Temperature Effect		Accuracy will not change when in $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$				
Time of Display update		Approx. 1 sec (Approx. 0.25 sec for bar graph)				
Display Setting Element	Main monitor	Element of Input 1~Input 3 (When measuring W, elements: A, V, W. When measuring Wh, element: Wh)				
	Sub-monitor (L)	Element of Input 1~Input 3 (When measuring W, elements: A, V, W)				
	Sub-monitor (R)	Element of Input 1~Input 3 (When measuring W, elements: A, V, W)				
	Bar graph	Element of Input 1~Input 3 (When measuring W, elements: A, V, W)				
LCD view	Up-Low co-viewing	75° view for each Up, Low, Left, Right				
	Upper view	10° view for Up, 60° for Low, 60° for each Left, Right				
Warranty when power cut-off		Remain Max, Min, setting and calculation values				

■UNIT DISPLAY LCD only displays below 18 kinds of unit. If unit is not in this 18 kinds, we will use unit seal to stick on display screen.

LCD Display Units (18 Kinds)			Sticky seal Units (56 Types) (${ }^{5}$)							
	Main monitor	Sub-monitor								
(1)	A	A	(1)	APm	(19)	L/h	(37)	$\mathrm{Nm}^{3} / \mathrm{min}$	(55)	${ }^{\circ} \mathrm{C}$
(2)	kA	kA	(2)	bar	(20)	L/min	(38)	$\mathrm{N} / \mathrm{m}^{2}$	(56)	kWh
(3)	V	V	(3)	cm	(21)	mA	(39)	$\mathrm{N} / \mathrm{mm}^{2}$		
(4)	kV	kV	(4)	$\cos \varphi$	(22)	mg / L	(40)	OPm		
(5)	W	-	(5)	ELm	(23)	min^{-1}	(41)	Pa		
(6)	kW	-	(6)	Hz	(24)	$\mathrm{mL} / \mathrm{min}$	(42)	pH		
(7)	MW	-	(7)	J	(25)	mm	(43)	ppm		
(8)	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	(8)	K	(26)	$\mathrm{m} / \mathrm{h}\left({ }^{8}\right)$	(44)	R		
(9)	\%	\%	(9)	kg	(27)	$\mathrm{m} / \mathrm{min}\left({ }^{8}\right.$)	(45)	rad		
(10)	m	m	(10)	kg/h	(28)	m / s	(46)	rpm		
(11)	m^{3}	m^{3}	(11)	$\mathrm{kg} / \mathrm{m}^{2}$	(29)	mV	(47)	SPm		
(12)	$\mathrm{m}^{3} \mathrm{~h}$	$\mathrm{m}^{3} / \mathrm{h}$	(12)	$\mathrm{kg} / \mathrm{m}^{3}$	(30)	$\mathrm{m}^{3} / \mathrm{s}$	(48)	T		
(13)	$\mathrm{m}^{3} / \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{min}$	(13)	kL	(31)	MPa	(49)	t/h		
(14)	m / h	-	(14)	kN	(32)	Mvar	(50)	TPm		
(15)	$\mathrm{m} / \mathrm{min}$	-	(15)	kPa	(33)	MW (8)	(51)	W ${ }^{8}$)		
(16)	$\mathrm{r} / \mathrm{min}$	$\mathrm{r} / \mathrm{min}$	(16)	kvar	(34)	N	(52)	YPm		
(17)	min	min	(17)	kW (${ }^{8}$)	(35)	$\mathrm{N} \cdot \mathrm{m}$	(53)	$\mu \mathrm{m}$		
(18)	no display	no display	(18)	L	(36)	$\mathrm{Nm}^{3} / \mathrm{h}$	(54)	$\mu \mathrm{S} / \mathrm{cm}$		

Note: $\left(^{8}\right.$) Possible for sticky seal unit only on sub-monitors. Main monitor will display by LCD.
$\left({ }^{9}\right)$ Letter height of sticky seal: 8.5 mm in main monitor, 5 mm in sub-monitor. Letter's color: gray (DIC $13^{\text {th }} 541$). Units of sticky seal are selected when ordering, and cannot be changed after purchased.

■ DIMENSIONS (Unit: mm)

DM-1 Dimension

voltage input is over $\pm 301 \mathrm{~V}$

CONNECTION DIAGRAM

ORDER INFORMATION Please specify below information to order:

1. For measuring DC Input
(1) Type name \& Specification code
(3) Analog output and quantity (1-3) of output.
(2) Display Scales, Units: Please advise us the display scale and unit of each Input.

For Ex.: Input 1: 100.0 A Input 2: 200.0 V Input 3: 200.0 V
2. For measuring W , Wh
(1) Type name, Specification code
(2) Display Scales, Units: Please advise us the display scale and unit of each Input. For Ex.: Input 1: 100.0A Input 2: 200.0V Input 3: 200.0kW
(3) Multiplier (In case of Wh): Please select at below table:

Voltage $(\mathrm{V}) \times$ Current (A)	Possible range of multiplier
$<10 \mathrm{~kW}$	$\times 0.1, \times 1, \times 10, \times 100, \times 1000$
$100 \mathrm{~kW} \leqq<1000 \mathrm{~kW}$	$\times 1, \times 10, \times 100, \times 1000$
$100 \mathrm{~kW} \leqq<10000 \mathrm{~kW}$	$\times 10, \times 100, \times 1000$
$10000 \mathrm{~kW} \leqq<100000 \mathrm{~kW}$	$\times 100, \times 1000$

Cannot change the multiplier after purchase.
Example of Order:
Type name \& Specification code: TLC-110L-D24W12-11F
2-Input selected: Input 1: $2000 \mathrm{~A} / 60 \mathrm{mV}$ Input 2: $50.0 \mathrm{~V} / 50 \mathrm{~V}$ W: $100.0 \mathrm{~kW} \quad$ Multiplier $\times 10 \mathrm{kWh}$ AC85-253V, DC80-143V
2-Output selected: DC4-20mA (below 550Ω load), Output 1: A, Output 2: V, Pulse Output: $10 \mathrm{kWh} /$ Pulse With DI (Reset Input) Display Pattern: D Quantity of order: $1 \mathrm{pc}(\mathrm{s})$
(4) Display Patterns:

Please refer page 10 and advise us the patterns (Display form) from 1 to 6 .
(4) Units of Pulse Output (In case of Pulse Output): Please select at below table:

Multiplier	Unit of Pulse Output			
0.1	1	0.1	0.01	0.001
1	10	1	0.1	0.01
10	100	10	1	0.1
100	1000	100	10	1
1000	10000	1000	100	10

(5) Analog output and quantity of output

In case of "No Pulse Output": please select quantity of Analog Output from 1-3
In case of "With Pulse Output": please select quantity of Analog Output from 1-2
(6) Display Patterns: Please refer page 10 and advise us the patterns (Display form) For measuring W: Select pattern from 7-C. For measuring Wh: Select pattern from D-J

Select multiplier for measuring Wh
Select Unit for Pulse Output

PARTS NAME \& FUNCTION

BAR GRAPH DISPLAY
Display measuring values.
The measuring elements displayed on bar
graph can be changed by DISPLAP button.

FLICKER SETTING INDEX
Can use Flicker OFF setting to manage the index.

For selecting the setting mode.
Display will change to setting mode 1 when continuously press ON more than 3 sec .
This button is used for value setting.
When measuring Wh , it can display up to the 3 rd decimal digit.

For Flicker value confirmation. If no operation in 10sec, Flicker value display will return to display mode. This button is also used to carry down the setting value in setting mode.

DIGITAL DISPLAY
3 elements can be measured and monitored at the same time. changes the order from the Max.value to Min.vaue. If no operation in 10 min , Max. and Min.value will return to display mode. This button is used for carry up the setting value. It can replace the function with DISPLAY button by setting.

For Max.value and Min.value confirmation in each input. It

SCALE MARKING Scale display can be set automatically

UNIT DISPLAY
Select units in unit setting

DISPLAY

For changing the input element which will display on bar graph
$\longrightarrow \underset{\text { (Left) }}{\text { Main monitor } \longrightarrow}$ Sub-monitor $\longrightarrow \underset{\text { (Right) }}{\text { Sub-monitor }} \longrightarrow$

Display mode will change to setting mode 2 if continuously press together with SET) button in more than 3 sec . The function can be replaced by + button. Setting mode will return to display mode after 1 action.

RESET/SHIFT

For resetting saved Max. and Min.value When continuously press ON more than 1sec, Max. and Min.value will be reset.

SETTING
SETTING - 1

Note: (${ }^{13}$ Setting only for measuring Wh (Display Pattem D-J)
(1) Setting only for Pulse output (option)
$\left({ }^{15}\right)$ Setting only for Backlight specification

Note: Setting mode is a little different in case of Communication Output specification

SETTING-2

Note: $\left({ }^{16}\right)$ There is no Output in case that Analog Output is not selected

COMMON SPECIFICATION

COMMON SPECIFICATION

Product Name			DC Receiving Meter	DC Multi Meter
Type Name	No Backlight		XLC-110	TLC-110
	With Backlight		XLC-110L	TLC-110L
Items		Specification		
Standard		JIS C 1102-1 : 1997 Direct acting analog electrical measuring instruments. Part 1: Definitions and general requirements		
		JIS C 1102-2 : 1997 Direct acting analog electrical measuring instruments. Part 2: Special requirements for ammeters and voltmeters		
		JIS C 1102-7 : 1997 Direct acting analog electrical measuring instruments. Part 7: Special requirements for multi-function instruments		
		JIS C 1102-8 : 1997 Direct acting analog electrical measuring instruments. Part 8: Special requirements for accessories		
		JIS C 1102-9 : 1997 Direct acting analog electrical measuring instruments. Part 9: Recommended test methods		
		JIS C 1111: 1989 AC-DC Transducer		
		JIS C 1010-1 : 1998 Safety requirements for electrical equipment for measurement, control, and laboratory use. Part 1: General requirements		
		TIA-485-A : 2003 Electrical characteristics of drivers and receivers for use in balanced and multipoint systems.		
Withstand Overload		Voltage circuit	2 times of rated voltage for 10 sec., 1.2 times for continuous	
		Current circuit	10 times of rated current for 5 sec., 1.2 times for continuous	
		Auxiliary Power	1.5 times of rated voltage for 10 sec ., 1.2 times for continuous When aux. power is DC110V: 1.5 times of rated voltage for 10 sec., 1.3 times for continuous	
Insulation Resistance		Between electric circuit and the outside box (earth)		DC500V 50M 2 or more
		Between input, output and aux. power		
		Between inputs		
		Between outputs (analog / communication / pulse)		
		Between analog outputs		Non- isolation (minus common)
Withstand Voltage		Between electric circuit and the outside box (earth)		AC2000V (50/60Hz), 1 min (${ }^{1}$)
		Between input, output and aux. power		
		Between inputs		
		Between outputs (analog / communication / pulse)		AC1500V ($50 / 60 \mathrm{~Hz}$), 1 min
		Between analog outputs		Non- isolation (minus common)
Lightning Impulse Withstand Voltage		Between electric circuit and the outside box (earth)		$5 \mathrm{kV} \quad 1.2 / 50 \mu \mathrm{~s}$ plus/minute polarity each 3 times
Noise Capacity		(1) Oscillatory surge voltage: If the attenuated oscillatory waveform of $2.5-3 \mathrm{kV}$ peak voltage and $1-1.5 \mathrm{MHz}$ frequency is applied repeatedly, there is no effect to measurement and communication (Accuracy of measurement is within $\pm 10 \%$) Voltage, Current input circuit (Common), Aux. power circuit (Normal/Common) (2) Square-wave impulse noise: If the square-wave impulse noise ($1 \mu \mathrm{~s}, 100 \mathrm{~ns}$ width) is applied repeatedly in 5 min , there is no effect to measurement and communication. (Accuracy of measurement is within $\pm 10 \%$). Voltage, current input circuit (Common): 1.5 kV or more Aux. power circuit (Normal/Common): 1.5 kV or more External input (DI) (Common): 1.0kV or more Analog or Communication output circuit (Inductive): 1.0kV or more Pulse output (Common): 1.0kV or more (3) Radio noise: If radio wave of $150,400 \mathrm{MHz}$ is applied continuously by $5 \mathrm{~W}, 1 \mathrm{~m}$, there is no effect to measurement and communication. (Accuracy of measurement is within $\pm 10 \%$) (4) Static noise: When electric connection (noise voltage: 8 kV): Accuracy of measurement is within $\pm 10 \%$ When no electric connection (noise voltage: 10kV): No damage caused. Condenser change method.		
Vibration / Shock		Vibration: (Positive scale only) 0.15 mm width, $10-55 \mathrm{~Hz}: 5$ times sweep in 1 octave $/ \mathrm{min}$ Shock: $490 \mathrm{~m}^{2} / \mathrm{s}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction 3 times for each		
Structure		Dimension: length x height x width: $110 \times 110 \times 105 \mathrm{~mm}$. Diameter: $99 \mathrm{~mm} \Phi$. Terminal cover attached. Protection class: IP40 Material of case: ABS(V-0). Out-looking color: Black (Munsell N1.5). Weight: approx.. 520g		
Power Outage Guarantee		Max. value, min. value, setting values, integrated values are saved by data memory		
Opera Hu	g Temperature/ idity Range	$-10^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}, 30 \sim 85 \% \mathrm{RH}$, no condensation		
Stora	Temperature	$-25 \sim+70^{\circ} \mathrm{C}$		

Note: (1) When circuit voltage is $501 \sim 800 \mathrm{~V}$, withstand voltage is AC2200V.

PATTERNS (DISPLAY FORMS)

XLC-110/110L

No.	Pattem No.	Specification of 1-input type			Specification of 2-input type			Specification of 3-input type			Bargraph	INPUT Display
		$\begin{gathered} \text { Main } \\ \text { monitor } \end{gathered}$	Submonitor (L)	Submonitor (R)	$\begin{aligned} & \text { Main } \\ & \text { monitor } \end{aligned}$	Submonitor (L)	Submonitor (R)	Main monitor	Submonitor (L)	Submonitor (R)		
1	Pattem 1	Input 1	-	-	Input 1	Input2	-	Input 1	Input 2	Input 3	Input 1 (can change to 2, 3)	ONOFF
2	Pattem 2	-	-	-	Input 1	-	Input 2	Input 1	Input 3	Input 2	Input 1 (can change to 2, 3)	OFF
3	Pattem 3	-	-	-	Input 2	Input 1	-	Input 2	Input 1	Input 3	Input 2 (can change to 1, 3)	OFF
4	Pattem 4	-	-	-	Input 2	-	Input 1	Input 2	Input 3	Input 1	Input 2 (can change to 1,3)	OFF
5	Pattem 5	-	-	-	-	Input 1	Input 2	Input 3	Input 1	Input2	Input 3 (can change to 1, 2)	OFF
6	Pattem 6	-	-	-	-	Input2	Input 1	Input 3	Input2	Input 1	Input 3 (can change to 1, 2)	OFF

- Pattem 1: Standard; Pattem 2~6: Specify and change the display position
- Only display elements of Input circuit number (For Ex.: In case of 1 -input, only display on main monitor (Input 1), sub-monitors are non-display.

TLC-110/110L

No.	Pattem No.	Specification of 1-input type			Specification of 2-input type			Specification of 3-input type			Bargraph	INPUT Display
		Main monitor	Submonitor (L)	Submonitor (R)	Main monitor	Submonitor (L)	Submonitor (R)	Main monitor	Submonitor (L)	Submonitor (R)		
1	Pattem 1	Input 1	-	-	Input 1	Input2	-	Input 1	Input2	Input 3	Input 1 (can change to 2, 3)	ONOFF
2	Pattem 2	-	-	-	Input 1	-	Input2	Input 1	Input 3	Input2	Input 1 (can change to 2,3)	OFF
3	Pattem 3	-	-	-	Input2	Input 1	-	Input2	Input 1	Input 3	Input 2 (can change to 1, 3)	OFF
4	Pattem 4	-	-	-	Input2	-	Input 1	Input2	Input 3	Input 1	Input2 (can change to 1, 3)	OFF
5	Pattem 5	-	-	-	-	Input 1	Input2	Input3	Input 1	Input2	Input 3 (can change to 1, 2)	OFF
6	Pattem 6	-	-	-	-	Input2	Input 1	Input3	Input2	Input 1	Input 3 (can change to 1, 2)	OFF
7	Pattem 7	-	-	-	W	A	V	W	A	V	W (can change to A, V)	OFF
8	Pattem 8	-	-	-	W	V	A	W	V	A	W (can change to A, V)	OFF
9	Pattem 9	-	-	-	A	V	$\begin{gathered} \mathrm{W} \\ \text { (stiky seal) } \end{gathered}$	A	V	$\begin{gathered} \mathrm{W} \\ \text { (stioky seal) } \end{gathered}$	A (can change to V, W)	OFF
A	Pattem A	-	-	-	A	$\begin{gathered} \mathrm{W} \\ (\text { stidy seal) } \end{gathered}$	V	A	W (stidy seal)	V	A (can change to V, W)	OFF
B	Pattem B	-	-	-	V	A	$\begin{gathered} \mathrm{W} \\ (\text { stidy seal) } \end{gathered}$	V	A	$\begin{gathered} \text { W } \\ \text { (stidy seal) } \end{gathered}$	V (can change to A, W)	OFF
C	Pattem C	-	-	-	V	$\begin{gathered} \mathrm{W} \\ \text { (stidy seal) } \end{gathered}$	A	V	$\begin{gathered} \text { W } \\ \text { (stiky seal) } \end{gathered}$	A	V (can change to A, W)	OFF
D	Pattem D	-	-	-	$\begin{gathered} \text { Wh } \\ \text { (sitiky seal) } \end{gathered}$	A	V	$\begin{gathered} \mathrm{Wh} \\ \text { (stidy seal) } \end{gathered}$	A	V	A (can change to V)	OFF
E	Pattem E	-	-	-	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	V	A	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	V	A	V (can change to A)	OFF
F	Pattem F	-	-	-	$\begin{gathered} \text { Wh } \\ \text { (stioky seal) } \end{gathered}$	A	$\begin{gathered} \text { W } \\ \text { (sitiky seal) } \end{gathered}$	$\begin{gathered} \hline \mathrm{Wh} \\ \text { (stidy seal) } \end{gathered}$	A	$\begin{gathered} \mathrm{W} \\ \text { (stidy seal) } \end{gathered}$	A (can change to W)	OFF
G	Pattem G	-	-	-	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	V	W (sitiky seal)	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	V	$\begin{gathered} \mathrm{W} \\ \text { (siticy seal) } \end{gathered}$	V (can change to W)	OFF
H	Pattem H	-	-	-	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \text { (stidy seal) } \end{gathered}$	A	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { (stiky seal) } \end{gathered}$	A	W (can change to A)	OFF
J	Pattem J	-	-	-	$\begin{gathered} \text { Wh } \\ (\text { stidicy seal) } \end{gathered}$	W (stidy seal)	V	$\begin{gathered} \text { Wh } \\ \text { (stidy seal) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \text { (stidy seal) } \end{gathered}$	V	W (can change to V)	OFF

- Only display elements of Input circuit number (For Ex.: In case of 1-input, only display on main monitor (Input 1), sub-monitors are non-display).

Depending on Patterns, it is possible to change position of display, and do the setting of $\mathrm{DC}(\mathrm{W})$, (Wh) measurements.
Pattem 1: Standard; Pattem 2~6: Specify and change the display position;
Pattem 7~C: Specify (W) measurement; Pattern D~J: Specify (Wh) measurement.
Units of sticky seal are selected when ordering (Ex. W, kW, Wh, kWh, etc.), and cannot be changed after purchased.

To ensure safety, please follow carefully the below attentions. Manual instruction is enclosed in same box of product, please read it carefully before using and make sure that the manual instruction is read by end-user also.

- Usage environment and conditions

Please ensure to use this product in a place that meets the following conditions.
In places that do not meet this conditions, it may cause malfunction and reduce the product life.

- Within the ambient temperature range of -10 to $+55^{\circ} \mathrm{C}$.
- Daily average temperature is not over $40^{\circ} \mathrm{C}$.
- Humidity is 85% RH or less, and non-condensing.
- Free of dust, corrosive gas, salt and oily smoke.
(Corrosive gas: $\mathrm{SO}_{2} / \mathrm{H}_{2} \mathrm{~S}$, etc.)
- Product is not in direct contact with rain, water drops or sunlight.
- Altitude is 2000 m or lower.
- If this product directly measures an inverter output of Cycle control, SCR phase angle control or PWM control, an error may occur due to its operation principle.
- Outdoor use conditions

Please follow the below notices when using outside the panel:

- Please prevent this product from rain and water drops because this product is not waterproof and splash proof construction. (Protection class: IP40)
- Please avoid the place with much dust.
- Please do not install in the place where sunlight hits directly even though product is behind glass.

Under the direct sunlight, screen of meter may get the high temperature and be deformed when over $80^{\circ} \mathrm{C}$.

- If the average temperature of surrounding area is over $40^{\circ} \mathrm{C}$, the product life span may be decrease.
- Mounting
- Please use $2.0 \sim 2.5 \mathrm{~N} . \mathrm{m}$ of torque to tighten the flange nuts M5 when mounting.
- Please take care the LCD parts not to be shock to prevent the error and damage.
- Connecting
- To ensure safety, connections should be performed by an electrical engineer qualified in wiring.
- Please use crimping terminals to connect.
- Please use $1.0 \sim 1.3 \mathrm{~N} . \mathrm{m}$ of torque for M 4 screws and $0.5 \sim 0.6 \mathrm{~N} . \mathrm{m}$ of torque for M 3 screws .
- Terminal cover is for avoiding electric shock, please use teminal cover after conducting connection.

Preparations before use

- This product must be set primary voltage, etc... correctly before use. Incorrect setting may result in wrong display.

Usage procedures

- Use this product within the rated range because if out of rated range, it may cause erroneous operation or malfunction.
- Please set the value correctly by reading Manual instruction carefully.
- Handling at Time of Malfunction/Error
- If the product listed in this catalog malfunctions, cut off the power and input and stop using. Please contact Daiichi Electronics or our representatives.
- In case of stripping down or remodeling, please be noticed that it may be out of warranty.
- About dew condensation

If the temperature and humidity change suddenly when this product is non-powered, the water drops by dew condensation may appear at inner side of display. (The display filter may stick to LCD surface, and round or ellipse shape of patterns may appear)
This phenomenon does not cause any trouble. It will disappear when power supply is applied continuously for about 2 hours.
Maintenance and inspections

- Use a soft towel to clean the dirt on screen. If the dirt is too hard to clean, use a wet towel (squeezed by water with a little neutral soap).
- Please do not use the organic solvent, chemicals, cleaners, etc., for cleaning.
- Please inspect the product to check out the bellowing:
(1) Damages on product
(3) Screws on terminals are slack when mounting
(2) Display is error or not (Ex. display does not respond to input)
(4) Teminal parts have dust or not
Please cut off the power during inspection.
- Storage

In the long period of storage, please keep the product in a place that meets the following conditions.
In places that do not meet this conditions, it may cause malfunction and reduce the product life.

- Within the ambient temperature range of -20 to $+70^{\circ} \mathrm{C}$ (storage temperature).
- Daily average temperature $40^{\circ} \mathrm{C}$ or lower.
- Free of dust, corrosive gas, salt and oily smoke.

During the storage period, do not connect with any wire of power, input/output and wrap the product in a vinyl pack.

- Disposal

This product do not use nickel-cadmium batteries. Dispose them as industrial waste (non-bumable trash).

DANGER OF DANGER OF
ELECTRIC SHOCK

Please refer to manual instruction for mounting and wiring, and should be performed by an electrical engineer.

- Please check the connection diagrams carefully before performing connections. Wrong connections may lead to machine faults and bum-out.
- Please avoid working with live wires because it may result in electric shock, malfunctions, gas and fire.
- Terminal cover is for avoiding electric shock, please use terminal cover after performing connections.

