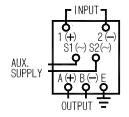
APPLICATION

This device amplifies various kinds of DC signals and converts them into unified intersystem signals. Because input, output, power source and earth are reciprocally insulated by a withstand voltage 2,000V, the product offers full advantages in transmitting insulated signals between power measuring systems, cutoff of noise, protecting control circuit from a sneak current, and transmitting an output directly to a distant place.

■ FEATURES

- •Withstand voltage AC2000V 50/60Hz for 1 min. between input, output, auxiliary supply and earth.
- •Impulse withstand voltage 5kV 1.2/50µs positive/negative polarity 3 times each between electric circuit and earth, auxiliary supply and input/output.
- •Supports both DIN rail and wall mounting.


Isolator TT2-91A (120×40×130mm/0.5kg)

■ SPECIFICATION

Input (input resistance or voltage drop)				Output (load resistance)		Auxiliary Supply	Common Specification
A1*1: DC0-10mV	(approx.1MΩ)	C1 *1, 2 : DC0—10µA	(100mV)	1: DC0-100mV	(≧200Ω)	1: AC100/110V±10%, 50/60Hz	Tolerance: ±0.25%
A2: DC0-50mV	(approx.1MΩ)	C2 *1 : DC0—100µA	(100mV)	2: DC0-1V	(≧200Ω)	2 : AC200/220V±10%, 50/60Hz	Response time
A3: DC0-60mV	$(approx.1M\Omega)$	C3: DC0-1mA	(approx. 100Ω)	3: DC0-5V	(≧600Ω)	3 *5 : DC20-57V	≦0.2 sec./99%
A4: DC0-100mV	$(approx.1M\Omega)$	C4: DC0-5mA	(approx. 100Ω)	4: DC0-10V	(≥2kΩ)	4: DC100/110V (88–143V)	VA consumption:
A5 : DC0-1V	$(approx.1M\Omega)$	C5: DC0—10mA	(approx. 100Ω)	5 : DC1-5V	(≧600Ω)	0 : other than those above	AC power source 3VA
A6: DC0-5V	$(approx.1M\Omega)$	C6: DC0-16mA	(approx. 100Ω)	A: DC0-1mA	(≦10kΩ)		DC power source 3W
A7: DC0-10V	$(approx.1M\Omega)$	C7: DC4-20mA	(approx. 100Ω)	B: DC0-5mA	(≦2kΩ)		
A8: DC1-5V	$(approx.1M\Omega)$	D1 *1, 2: DC±10µA	$(\pm 100 \mathrm{mV})$	C: DC0-10mA	(≦1kΩ)		
B1 * 1 : DC±10mV	$(approx.1M\Omega)$	D2 * 1 : DC±10µA	(±100mV)	D: DC0-16mA	(≦600Ω)		
B2 : DC±50mV	$(approx.1M\Omega)$	D3: DC±500µA	(±100mV)	E: DC1-5mA	(≦2kΩ)		
B3 : DC±60mV	$(approx.1M\Omega)$	D4: DC± 1mA	(approx. 100Ω)	F: DC4-20mA	(≦550Ω)		
B4: DC±100mV	$(approx.1M\Omega)$	D5 : DC± 5mA	(approx. 100Ω)	0 *4 : other than those above			
B5 : DC± 1V	$(approx.1M\Omega)$	D6: DC±10mA	(approx. 100Ω)				
B6 : DC± 5V	$(approx.1M\Omega)$	00 * 3 : other than those	e above				
B7: DC±10V	$(approx.1M\Omega)$						

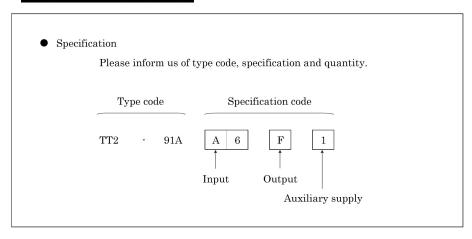
- *1 Tolerance becomes $\pm 0.5\%$ in the case of input voltage less than 50mV, input current less than $500\mu A$.
- *2 For input 10µA, circuit voltage is 15V or less.
- *3 Input voltage ranging from 10mV to 600V, input current ranging from 10µA to 100mA are manufacturable.
- *4 Consult with us for voltage output up to 10V, current output up to 20mA.
- *5 Rated voltage of auxiliary supply DC20-57V is DC24V or DC48V.
- ▶ Open current output: The output terminal can be used with the current output terminal open at all times. Note that approx. 15V voltage will occur at the output terminal.

■ CONNECTION DIAGRAM

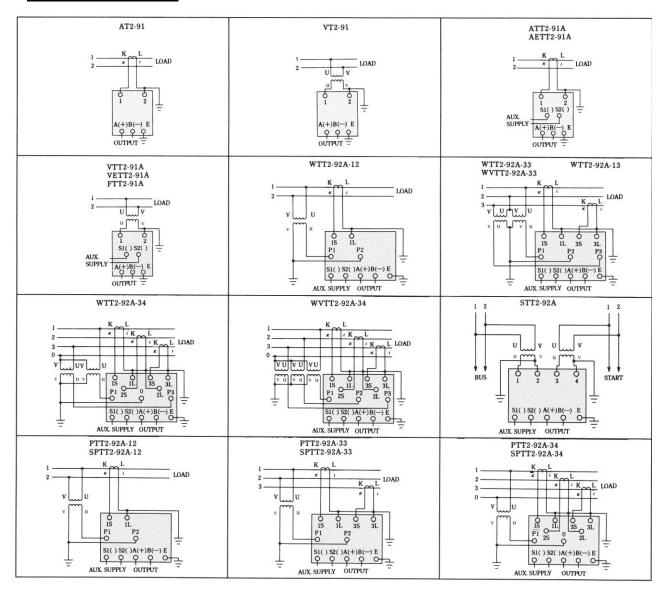
In the case of DC auxiliary supply, connect the wire with S1 as + and S2 as -.

§ BOX TRANSDUCER §

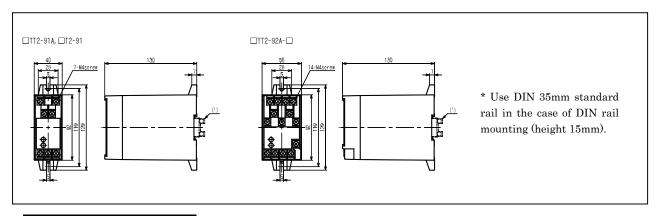
SMALL SIZED SIGNAL TRANSDUCER TT2-91A


•Specifying special filter

When a ripple equal to a single-phase AC full rectification wave (50/60Hz) degree is included in input wave, it is necessary to specify a special filter to convert it into a DC output. A 50/60Hz full rectification wave filter is attached by specification. Also, consult with us for special waveform such as inverter.


•Response time

Please specify it if a product of a very fast response time (60 ms/99%) in control circuit is necessary.


■ PURCHASE SPECIFICATION

■ CONNECTION DIAGRAM (in the case of DC auxiliary supply, connect SI as +, S2 as -)

■ **DIMENSIONS** (mm) See the connection diagram above for terminal arrangement

■ PURCHASE SPECIFICATION

- 1. Type;
- 2. Input (rated voltage / current / frequency);
- 3. Output (load resistance);

- 4. Auxiliary supply;
- 5. Quantity;