PICTURE FRAME SHAPE INSTRUMENT

FK SERIES

FK - 5C

OUTLINE

FK series is a Picture Frame Shape Instruments meter, which only the scale part is in front of panel. This series have 2 types, FK-7 and FK-5.

FK series is one of measument instrument suitable for electric and electronic equipment. Adoption with knife-edge pointer and it can also use with high accuracy mirror scale plate. In addition, this series meter is with superior quality, be fully satisfied with high reliability and also with standard JIS C 1102-1~9 (IEC 60051-1 matching) strong as vibrating and impulse.

FK - 7C

FEATURES

► High quality and high performance meter.

► Adopting transducer with electronics technology, more model product is expanding.

► Received indicator for physical value scale also can be manufacture.

- ► Meter with mirror knife-edge pointer also can be manufacture.
- ▶ Meter material is flame retardant.
- One-touch installation.

TYPE CODE DESIGNATION

F (1) K - (2) C (3) - (4)

(1) Type of measurand

Mark	Measurand	Operation Principle
М	DC current, voltage	Permanent magnet moving coil
Х	DC receiving indicator	Permanent magnet moving coil
Y	AC receiving indicator	Rectifier
С	AC current, voltage	Rectifier/ RMS value rectifier
W	AC power	Transducer
WVB	Reactive power (balanced)	Transducer
WV	Reactive power (unbalanced)	Transducer
PB	Power factor (balanced)	Transducer
Р	Power factor (unbalanced)	Transducer
А	Frequency meter	Transducer

(2) Shape

Mark	Picture-Frame Shape Meter
7	127×73
5	100 × 57

(3) Special Specification

Mark	Specification
Н	SCR
С	Cycle Control

(4) Kind of Circuit

Mark	Circuit
12	Single phase
13	Single phase 3-wire
33	Three phase 3-wire
34	Three phase 4-wire

*Please specify this circuit for AC power, Reactive power & Power factor

COMMON STANDARD SPECIFICATIONS

	ITEM	SPECIFICATION					
Standard		JIS C 1102:2007 [Electric Indicating Mete	er Direct Acting Type]				
Standard		IEC 60051-1 Compliant					
Class		Refer to [List of FK series]					
Support system	n	Taut band system					
Swing angle o	f meter	86°					
Dimensional and from from t		FK-7C: 127×73mm					
Dimensions meter from front		FK-5C: 100×57mm					
		FK-7: 87mm					
Length of scale		FK-5: 72mm					
Color of scale	plate	White					
Pointer		Knife-edge (Red)					
Installation posture		Vertical (\perp)					
Material panel		Iron & non-iron plate					
Thickness panel		4mm or less					
Color of cover		Black (Munsell N1.5)					
Material of cas	e	Cover: Phenol resin (FK-7C), ABS resin (FK-5C)					
Insulation resist	stance	Between electric circuit and outer case	DC500V, 50M Ω or more				
Voltage test		Between electric circuit and outer case	AC3320V, between 5sec.				
	Standard	JIS C 1010-1					
	Insulation	Between electric circuit and outer case: Base of insulation					
Safety	Use	For indoor use (Cubicle etc.)					
requirements	High altitude	2000m or less					
requirements	Pollution	Pollution level 2					
	Measure category	CATIII					
	Max. circuit voltage	600V (Ammeter)					
Operated tem	perature/	-10 \sim 55 $^{\circ}$ C, Average day temperature 40 $^{\circ}$ C or less, 25 \sim 85 $^{\circ}$ RH					
Humidity limit		(Reference to steel ship rules ambient temperature $45^\circ\!\mathrm{C}$)					
Storage tempe	erature range	-20~70°C					

STANDARD SCALE DIVISION

Max. scale value (10-time)			1.5	2	2.5	3	4	5	6	7.5	8	9
Туре	FK-7C	50	75	40	50	60	80	50	60	75	80	45
	FK-5C	50	30	40	50	30	40	50	30	37.5	40	45

COMMON SPECIAL SPECIFICATIONS (Please Specify)

	ITEM	SPECIFICATION				
	Color line	Red, Green, Ye	ellow (please specify)			
	Extend scale	FCK: 2~5-time	e extend			
Scale	Color area (bar)	Red, Green, Ye	ellow (please specify)			
	Double scale	Please specify				
	Double seal	Please specify				
	Max. scale division	7-type:100 divi	sion; 5-type: 80 division			
	Mirror	Please specify				
	Special mark	Please specify				
		Vibration	$2\sim$ 10Hz amplitude 15mm p-p			
Vibration proof specification		VIDIALION	2~55Hz, 29.4m/s ²			
		Shock	147m/s ² , 30-time			
Tropical specification		Rust preventative $\ensuremath{^{\sc l}}\xsc FOR TROPICS\ensuremath{^{\sc l}}\xsc will display at the name plate$				
Pointer		Rod-shape (black) combine use with multiple scale etc.				
Control pointer						
Installation posture		Horizontal or Inclined (specify the angle)				
Flame-retardant materials		Cover	-			
Protectio	on circuit of meter	Overcurrent Overvoltage	Specify for necessary tolerated dose			
		Voltmeter	Up to $\pm 10\%$, $\pm 20\%$, $\pm 30\%$ of central scale value 75% or more of scale length			
Part of e	xtended scale	Ammeter	Up to 20% of upper limit value of effective measuring range 95% or more of scale length			
		, unification	Up to 50% of upper limit value of effective measuring range 75% or more of scale length			
For SCR	control waves	AC current, AC	Voltage, Frequency			
For cycle	e control use	AC current, AC	C voltage (Recitifier Type)			
Scale (si	ngle item)	Not JIS mark				
Color of	cover	Please specify				
Others		Please consultation with us for the special frequency				

PURCHASE SPECIFICATIONS

Item to Specify When Purchase

- 1).Type Name
- 2).Rated (Max. scale/ Input) *1
- 3).Color of cover
- 4). Terminal cover (specify if require)
- 5).Units
- 6). Options (Refer to Common Special Specification)
- 7). Test report (specify useful frequency and number of copies require)
- *1. For max.scale value watt meter or var meter, please refer to List of Standard Max. Scale Value. Please specify frequency for power factor meter according to the specification.

LIST OF FK SERIES

	MODEL	FK – 7 C		FK – 5 C			
F	Product	Principle	Туре	Class	Туре	Class	
DC Ammete	r	Moving coil	FMK-7C	1.5	FMK-5C	2.5	
DC Voltmeter			FMK-7C	1.5	FMK-5C	2.5	
DC Receivir	ng Indicator	Moving coil	FXK-7C	1.5	FXK-5C	2.5	
AC Receivin	g Indicator	Rectifier	FYK-7C	1.5	FYK-5C	2.5	
AC Ammete	r	Postifier	FCK-7C	1.5	FCK-5C	2.5	
AC Voltmete	er	Recuiler	FCK-7C	1.5	FCK-5C	2.5	
	Single phase		FWK-7C-12	1.5	FWK-5C-12	2.5	
Watt Meter	Single phase 3-wire	Transducer	FWK-7C-13	1.5	FWK-5C-13	2.5	
	3 phase		FWK-7C-33	1.5	FWK-5C-33	2.5	
	3 phase 4-wire		FWK-7C-34	1.5	FWK-5C-34	2.5	
	Single phase		FWVK-7C-12	1.5	FWVK-5C-12	2.5	
Var Matar	3 phase (balanced)	Tranaduaar	FWVBK-7C-33	1.5	FWVBK-5C-33	2.5	
vai metei	3 phase (unbalanced)	Transducer	FWVK-7C-33	1.5	FWVK-5C-33	2.5	
	3 phase 4-wire		FWVK-7C-34	1.5	FWVK-5C-34	2.5	
	Single phase		FPK-7C-12		FPK-5C-12		
Power Factor	3 phase (balanced)		FPBK-7C-33		FPBK-5C-33	5.0	
	3 phase (unbalanced)	Transducer	FPK-7C-33	5.0	FPK-5C-33		
Meter	3 phase 4-wire (balanced)		FPBK-7C-34		FPBK-7C-34		
	3 phase 4-wire (unbalanced)		FPK-7C-34		FPK-5C-34		
Frequency N	leter	Transducer	FAK-7C	1.0	FAK-5C	1.0	

► Keep in mind please, Transducer type meter does transitional indication at voltage input start.

DC Ammeter (Moving Coil Type) - FMK

AMMETER

Max. Scale Value	Max. Scale Value Approx. Internal Resistance or Voltage Drop FMK–7C, 5C							
25	2.26k0							
23µA	2.20832							
50µA	1.3kΩ							
100µA	1.1kΩ							
200µA	550Ω							
500µA	81Ω	_						
1mA	12Ω							
2mA	9.8Ω							
5mA	12Ω							
10mA	2.6Ω							
20mA	2.2Ω							
50mA~30A	60mV							
30A~10kA ⁽¹⁾	60mV	Shunt ⁽²⁾						

Note:

⁽¹⁾ When 30A is exceeds, shunt will external to meter 60mV. Meter 50mV, 100mV also can be manufacture.

 $^{(2)}$ Lead wire of shunt is not attached. Standard lead wire resistance is 0.07Ω (1.25mm²)

• Up until 1Ω will manufacture when 0.07Ω is exceeds, please specify.

Lead Wire Resistance value

Cross section (mm ²)	Annealed Copper (Ω/m)	Remarks
1.25	0.0165	JIS C 3317 (HIV)
2.0	0.00924	JIS C 3307 (IV)
3.5	0.00520	Twist wire

► Meter built-in adjustable resistor for external resistance corrective can be manufacture.

• Meter both deflection can be manufacture.

Connection Diagram

Ammeter

<u>Dimensions</u>

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)
FMK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320
FMK-5C	100	97	57	55 ^{+0.2} -1.2	4	20	36	10	31	53 Φ	21.5	220

 $Electrical\ indicating\ meter\ Catalog\ e\textbf{-99-024/-}$

DC Voltmeter (Moving Coil Type) - FMK

VOLTMETER

Max, Scalo Valuo	Approx. Internal Resistance or Voltage Drop	Accessory		
	FMK–7C, 5C	Accessory		
50mV~900mV	4mA			
1V~300V ⁽¹⁾	1mA			
500V	1	_		
600V ⁽¹⁾	IIIA			
750V/1mA ~ 25V/1mA ⁽²⁾	1mA	Series resistor		

Note:

- $^{(1)}$ Internal resistance up to 10k Ω/V will be manufacture when voltmeter 3V is exceeds.
- ⁽²⁾ Series resistor will external to meter 1mA when 600V is exceeds.
- ▶ Meter both deflection also can be manufacture.
- External overvoltage protection to voltmeter 500mV or more also can be manufacture.

Connection Diagram

Voltmeter

Voltmeter external with Series resistor (DM-1)

Voltmeter external with Series resistor (DM-2~25)

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)	
FMK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320	
FMK-5C	100	97	57	55 ^{+0.2} -1.2	4	20	36	10	31	53 Φ	21.5	220	

DC Receiving Indicator Meter (Moving Coil Type) - FXK

Ammeter or voltmeter is a receiving indicator meter for received electrical signal from detector or transmitter, and measure the value of physical quantity, electric power, power factor and frequency. About the scale value and the electric input quantity, it can be manufactured by specify.

For example:

Scale value 100%	Electric input quantity DC 3V
Scale Value 0~2MPa	Electric input quantity DC 4~20mA

About voltage input, meter built-in adjustable resistor for resistance corrective (standard ±20%) also can be manufacture.

DC RECEIVING INDICATOR

Electrical Input	Internal Resistance Overview	Electrical Input	Consumption Current
Quantity	FXK–7C, 5C	Quantity	FXK–7C, 5C
100µA	1.1ΚΩ	1V	1mA
500µA	81Ω	2V	//
1mA	12Ω	1~5V ⁽¹⁾	//
2mA	9.8Ω	5V	//
5mA	12Ω	10V	//
10mA	2.6Ω	20V	//
20mA	2.2Ω	50V	//
4~20mA ⁽¹⁾	2.2Ω	5	
10~50mA ⁽¹⁾	1.5Ω	300V	<i>II</i> ⁽²⁾

Note:

⁽¹⁾ The receiving indicator meter, received the bias sign with input electrical quantity DC1~5V and DC4~20mA, please adjust to Zero position when 1V, 4mA sign bias is input.

⁽²⁾ Consumption current for VR internal meter is 1mA.

► Meter both deflection also can be manufacture.

Connection Diagram

DC Receiving Indicator

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	к	Weight (g)
FXK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320
FXK-5C	100	97	57	55 ^{+0.2} _{-0.1}	4	20	36	10	31	53 Φ	21.5	260

AC Receiving Indicator Meter (Rectifier Type) - FYK

Ammeter or voltmeter is a receiving indicator meter for received electrical signal from detector or transmitter, and measures the value of physical quantity, electric power, power factor and frequency. About the scale volue and electric input quantity, it can be manufactured by specify.

For example:	
Scale value 100%	Input electric quantity DC 3V
Scale Value 0~2MPa	Input electric quantity DC 4~20mA

About voltage input, meter built-in adjustable resistor for resistance corrective (standard ±20%) also can be manufacture.

AC AMMETER

Electrical Input	Internal Resistance or Consumption VA.	Electrical Input	Consumption Current				
Quantity	FYK–7C, 5C	Quantity	FYK–7C, 5C				
100µA	5kΩ	3V					
500µA	1.5kΩ	s					
1mA	800Ω	300V					
3mA	350Ω		1mA				
5mA	300Ω						
10mA	0.5\/A						
20mA	0.004						

Connection Diagram

AC Receiving Indicator

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	к	Weight (g)
FYK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320
FYK-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	260

AC Ammeter (Rectifier Type) - FCK

AMMETER

Max, Saala Valua	Approx. Internal Resistance or Consumption VA	A
	FCK–7C, 5C	Accessory
100µA	5kΩ	
500µA	1.5kΩ	
1mA	800Ω	
3mA	350Ω	—
5mA	300Ω	
10mA ~ 300mA ⁽¹⁾⁽²⁾	0.5VA	
350mA ~ 100A ⁽¹⁾	1VA	MR-CTN

Note:

⁽¹⁾ When 100A or 650V circuit voltage is exceeds, please external current transformer (CT) to meter 5A (0.1A, 1A).

⁽²⁾ External overcurrent protection to ammeter 10mA or less also can be manufacture.

- Extended scale meter also can be manufacture. (External with AT-62M, input until 15A only.)
- ▶ For high frequency ware. Can be manufacture until 10 kHz. Please specify it.

For Cycle Control Waveform Meter

Please use cycle control for cycle control wareform. (Type name: FCTK-DCC, external with AT-62MEC)

For Distorted Wareform Meter (Approx. RMS value rectifier menthod)

Dimension

Keep in mind please, that standard rectifier type will affected by waveform distortion.

d Please use approx. RMS value rectifier method for third harmonics mixed waveform and SCR waveform (Type: FCTK-□C, external with AT-62ME)

Connection Diagram

Ammeter with CT or MR-CTN

Ammeter with CT and MR-CTN

MR-CTN (0.35~25A/10mA)

MR-CTN (30~100A/20mA)

* Please reference to next page for Dimensios AT-62ME, AT-62MEC & VT-62ME, VT-62MEC

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)	Current (A)	d
FCK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320	30~70	Φ 6.5
FCK-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	220	75~100	Φ 8.5

Voltmeter (Rectifier Type) - FCK

VOLTMETER

Max, Saala Valua	Consumption Current	A		
	FCK–7C, 5C	Accessory		
3V ~ 600V	1mA	_		
750V ⁽¹⁾ ~ 25kV	1mA	Series resistance		

Note:

⁽¹⁾ When 600V is exceeds, series resistance will external to meter 1mA.

Please refer the size at Instrument accessory.

▶ For high frequency ware. Can be manufacture until 10 kHz. Please specify it.

For Cycle Control Waveform Meter

Please use cycle control for cycle control wareform. (Type name: FCTK-□CC, external with VT-62MEC)

For Distorted Wareform Meter (Approx. RMS value rectifier menthod)

Keep in mind please, that standard rectifier type will affected by waveform distortion. Please use approx. RMS value rectifier method for third harmonics mixed waveform and SCR waveform. (Type: FCTK-□C, external with VT-62ME)

Connection Diagram

Voltmeter

Voltmeter external series resistor (DM-1)

Voltmete external series resistor (DM-2~25)

Dimensions For Type: AT-62ME, AT-62MEC, VT-62ME, VT-62MEC

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)
FCK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	320
FCK-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	220

Watthour Meter (Transducer Type) - FWK

WATTHOUR METER ⁽¹⁾

Application	Type	Poting ⁽²⁾	Consum	ption VA	Accessory
Application	туре	Rating	Voltage side	Current side	(Transducer)
Single phase	FWK-7C-12	110V, 5A(1A)	2VA	1VA	WT 62M 12
Single phase	5C-12	220V, 5A(1A)	3.5VA	1VA	VV I -02IVI-12
Single phase	FWK-7C-13	110\/ 54(14)	Each phase 2\/A	Each phase 1\/A	\N/T 93M 13
3-wire	5C-13	110V, 5A(1A)	Each phase 2VA	Each phase TVA	VV I -03IVI- 13
2 phone	FWK-7C-33	110V, 5A(1A)	Each phase 2VA	Each phase 1VA	M/T 02M 22
5 phase	5C-33	220V, 5A(1A)	Each phase 3.5VA	Each phase 1VA	VV I -03IVI-33
3 phase	FWK-7C-34	110/ √3V, 5A(1A)	Each phase 1.5VA	Each phase 1VA	MT 02M 24
4-wire ⁽³⁾	5C-34	220/ √3V, 5A(1A)	Each phase 3VA	Each phase 1VA	vv i -03lvl-34

Note:

⁽¹⁾ Please refer to Reference List (page 14) for manufactured limit and max. scale value.

⁽²⁾ When above rating is exceeds, please external CT or VT respectively to meter 110V, 5A(1A). Useble voltage range: 110V: 90~130V, 220V: 180~260V.

⁽³⁾ 3 phase 4-wire is voltage balanced.

► For high frequency ware use. Please specify the frequency.

For SCR Control Waveform

Type name: FWK-DCH-D, Aux. power is necessary. (3 phase 4-wire can not be manufacture)

Connection Diagram

Single phase watthour meter External with WT-62M-12

Single phase 3 wire / 3 phase watthour meter External with WT-83M-13/33

3 phase 4 wire watthour meter External with WT-83M-34

Dimensions

Dimensions Accessory (Transducer)

Dimension For Type: WT-83M

Dimension For Type: WT-62M

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)
FWK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	Below 1180
FWK-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	Below 1120

Var Meter (Transducer Type) - FWVK

VAR METER

Application	Turne	Deting ⁽²⁾	Consum	ption VA	Accessory
Application	Type	Raung	Voltage side	Current side	(Transducer)
Cingle phase ⁽³⁾	FWVK-7C-12	110V, 5A(1A)	3.5VA	1.5VA	
Single phase	5C-12	220V, 5A(1A)	3.5VA	1.5VA	VVVI-02IVI-12
3 phase ⁽⁴⁾	FWVBK-7C-33	110V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	
(balanced)	5C-33	220V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	VV V D I -03IVI-33
3 phase ⁽⁴⁾	FWVK-7C-33	110V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	W/V/T_83M_33
(unbalanced)	5C-33	220V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	VVV1-05IVI-55
3 phase ⁽⁴⁾	FWVK-7C-34	110V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	W//T 83W 34
4-wire ⁽⁵⁾	5C-34	220V, 5A(1A)	Each phase 3.5VA	Each phase 1.5VA	vvv1-03101-34

Note:

⁽¹⁾ Please refer to Reference List (page 14) for manufactured limit and max. scale value. Standard scale: Lead var~0~Lag var

⁽²⁾ When above rating is exceeds, please external CT or VT respectively to meter 110V, 5A(1A). Useble voltage range: 110V: 90~130V, 220V: 180~260V.

- ⁽³⁾ Please specify the frequency (50Hz or 60Hz) for single phase circuit.
- ⁽⁴⁾ Please use 3 phase, 3 phase 4-wire in positive phase sequence.
- ⁽⁵⁾ 3 phase 4-wire is voltage balanced.

Connection Diagram

Single phase var meter External with WVT-62M-12

Single phase 3 wire / 3 phase var meter External with WVT, WVBT-83M-13/33

3 phase 4 wire var meter External with WVT-83M-34

Dimensions

A1±0.2	L
	- 18
	¥
Panel cutout	

Dimensions Acceessory (Transducer)

Type: WVT-83M, WVBT-83M

Type: WVT-62M

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Weight (g)
FWV(B)K-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	Below 1180
FWV(B)K-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	Below 1120

O DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

PRODUCIBLE INTRINSIC MAX. SCALE VALUE METER

Manufacturable range will be limited where intrinsic max. scale value is within the scope as shown in the list at below . But in the case, the meter used external CV or VT, max. scale value will be calculated as following formula:

Intrinsic <u>Max. scale value</u> Max. scale value = VT ratio X CT ratio

Type Name		Rating		Manufacturable Intrinsic Range			
Single phase watthour meter		110V/5A (1A))	350~600W (var)			
Single phase var meter		220V/5A (1A))	700~1200W (var)			
Single phase 3-wire watthour meter		110V/5A (1A))	600~1200W (var)			
3 phase watthour meter		110V/5A (1A))	600~1200W (var)			
3 phase var meter		220V/5A (1A	A)	1200~2400W (var)			
	Line	Phase	Current	—			
3 phase 4-wire watthour meter	110V	110/√3V	5A (1A)	600~1200W (var)			
	220V	220/√3V	5A (1A)	1200~2400W (var)			

REFERENCE LIST FOR STANDARD MAX. SCALE VALUE THREE PHASE WATTMETER

The following table is the standard of 3 phase wattmeter. The following table also applies for 3 phase 4-wire wattmeter, single phase 3-wire wattmeter and var meter. Standard for single phase wattmeter calculation : listed value \times 1/2

Line vol. CT ratio	דע)	6600V 6600 / 11	0V)	(VT	3300V 3300 / 11	0V)	(VT	440V 440 / 1	10V)		220V			110V	
5 / 5A	kW 60	kW 50	kW 40	kW 30	kW 25	kW 20	kW 4	kW 5	kW 3	kW 2	kW 1.5	kW 1.2	kW 1	kW 0.8	kW 0.6
7.5 / 5A	90	75	60	45	40	30	6	5	4	3	2.5	2	1.5	1.2	1
10 / 5A	120	100	80	60	50	40	8	7.0	6	4	3	2.5	2	1.5	1.2
15 / 5A	200	150	120	100	75	60	12	10	8	6	5	4	3	2.5	2
20 / 5A	240	200	150	120	100	80	15	_	12	8	6	5	4	3	2.5
25 / 5A	300	250	200	150	120	100	20	—	15	10	8	7.5	5	4	3
30 / 5A	400	300	240	200	150	120	24	_	20	12	10	8	6	5	4
40 / 5A	480	400	300	240	200	150	30	—	24	15	12	10	8	7.5	5
50 / 5A	600	500	400	300	250	200	40	—	30	20	15	12	10	8	6
60 / 5A	750	600	480	400	300	240	48	-	40	24	—	20	12	10	8
75 / 5A	900	750	600	450	400	300	60	50	40	30	25	20	15	12	10
100 / 5A	1200	1000	800	600	500	400	80	75	60	40	30	25	20	15	12
150 / 5A	2000	1500	1200	1000	750	600	120	100	80	60	50	40	30	25	20
200 / 5A	2400	2000	1500	1200	1000	800	150	—	120	80	60	50	40	30	25
250 / 5A	3000	2500	2000	1500	1200	1000	200	_	150	100	80	75	50	40	30
300 / 5A	4000	3000	2400	2000	1500	1200	240	—	200	120	100	80	60	50	40
350 / 5A	4000		3000	2000		1500	300	250	200	150	120	100	75	60	50
400 / 5A	4800	4000	3000	2400	2000	1500	300	—	250	150	120	100	80	75	50
450 / 5A	6000	5000	4000	3000	2500	2000	400	300	250	200	150	120	100	75	60
500 / 5A	6000	5000	4000	3000	2500	2000	400	—	300	200	150	120	100	75	60
600 / 5A	7500	6000	4800	4000	3000	2400	500	—	400	240	—	200	120	100	70
750 / 5A	9000	7500	6000	4500	4000	3000	650	500	400	300	250	200	150	120	100
800 / 5A	10MW	8000	7500	5000	—	4000	700	600	500	300	250	200	150	120	100
1000 / 5A	12MW	10MW	8000	6000	5000	4000	800	750	600	400	300	250	200	150	120
1200 / 5A	15MW	12MW	10MW	7500	6000	5000	1000	800	750	500	400	300	250	200	150
1500 / 5A	20MW	15MW	12MW	10MW	7500	6000	1200	1000	800	600	500	400	300	250	200

Power Factor Meter (Transducer Type) - FPK

POWER FACTOR METER ⁽¹⁾

Application	Тура	Pating ⁽²⁾	Consump	otion VA	Accessory (Transducor)
Application	туре	Rating	Voltage side	Current side	Accessory (mansucer)
Single phase	FPK-7C-12	110V, 5A(1A)	1VA	1VA	PT-62M-12 ⁽⁴⁾
Single phase	5C-12	220V, 5A(1A)	2VA	2VA	1 1-02101-12
3 phase	FPBK-7C-33	110V, 5A(1A)	Each phase 1VA	Each phase 1VA	PRT-62M-33 ⁽⁴⁾
(balanced)	5C-33	220V, 5A(1A)	Each phase 2VA	Each phase 2VA	1 D1-02W-35
3 phase	FPK-7C-33	110V, 5A(1A)	Each phase 1VA	Each phase 1VA	PT-63M-33 ⁽⁴⁾
(unbalanced)	⁽³⁾ 5C-33	220V, 5A(1A)	Each phase 1VA	Each phase 2VA	1 1-00101-00
3 phase 4-wire	FPBK-7C-34	110V, 5A(1A)	Each phase 1VA	Each phase 1VA	PRT-62M-34 (4)
(balanced) 5C-3		220V, 5A(1A)	Each phase 2VA	Each phase 2VA	1 D1-0210-34
3 phase 4-wire	FPK-7C-34	110V, 5A (1A)	Each phase 1VA	Each phase 1VA	PT_64M_34 ⁽⁴⁾
(unbalanced)	⁽³⁾ 5C-34	220V, 5A (1A)	Each phase 2VA	Each phase 2VA	1 1-0-10-04

Note:

⁽¹⁾ Standard scale: Lead0.5~1~Lag0.5. Scale for 3 phase 3-wire only: Lead0~1~Lag0 (Effective measuring range: Lead0.3~1~Lag0.3 also can manufacture)

Please specify frequency (50Hz or 60Hz) for all type except 3 phase balanced circuit.

⁽²⁾ When above rating is exceeds, please external CT or VT respectively to meter 110V, 5A (1A). Useble voltage range: 110V: 90~130V, 220V: 180~260V.

Please use in positive phase sequence.

- ⁽³⁾ 3 phase (unbalanced), 3 phase 4-wire (unbalanced) is voltage balanced
- ⁽⁴⁾ Please refer to next page for dimension accessory (Transducer)

Connection Diagram (If make a mistake on phase sequence, it becomes error)

Single Phase Power Factor Meter External with PT-62M-12

3 Phase 4 wire (balanced) Power Factor Meter External with PBT-62M-34

3 Phase Balanced Power Factor Meter External with PBT-62M-33

3 Phase unbalanced Power Factor Meter External with PT-63M-33

3 Phase 4 wire unbalanced Power Factor Meter External with PT-64M-34

Т	уре	А	A1	В	B1	С	C1	D	D1	Е	F	К	Ţ
FPK-7C	FP(B)K-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	FP
FPK-5C	FP(B)K-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	FP

Туре	Weight (g)
FPK-7C	Below 1120
FPK-5C	Below 1060

O DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

Power Factor Meter (Transducer Type) - FPK

Dimension

Dimension For Type: PT-62M, PBT-62M

Dimension For Type: PT-63M

Dimension For Type: PT-64M

Frequency Meter (Transducer Type) - FAK

Rated Voltage	Measurement Range	Consumption VA FAK-7C, 5C	Accessory (Transducer)	Voltage Change Range
110V ⁽²⁾	45 ~ 55Hz 55 ~ 65Hz 45 ~ 65Hz 350 ~ 450Hz ⁽¹⁾	1.7VA	FT-62M	90 ~ 130V
220V ⁽²⁾	45 ~ 55Hz 55 ~ 65Hz 45 ~ 65Hz 350 ~ 450Hz ⁽¹⁾	2.5VA	FT-62M	180 ~ 260V

Note:

⁽¹⁾ Special frequency measurement range also can manufacture (until 1000Hz)

⁽²⁾ Useble voltage range: 110V: 90~130V, 220V: 180~260V.

Please contact with us for manufacture above rated voltage or voltage change range.

For SCR Wareform Meter

Meter SCR wareform input (Distortion wareform) also can manufacture. Type Name: LAK-□CH

Connection Diagram

Туре	А	A1	В	B1	С	C1	D	D1	Е	F	к	Туре	Weight (g)
FAK-7C	127	121	73	70.5 ±0.2	4	19.5	45	10	40	70 Φ	22	FAK-7C	720
FAK-5C	100	97	57	55 ^{+0.2} -0.1	4	20	36	10	31	53 Φ	21.5	FAK-5C	660

Instrument Accessory

Current Transformers (CT) & Voltage Transformers (VT)

It is possible to measure a large current by combine with 5A or 1A current transformer.

Circle Window Type & Square Window Type for use depending on the magnitude of the current.

It is possible to measure a large voltage by combine with 110V voltage transformer.

FEATURES

 High reliability & high performance current transformer. Compliance with:

JIS C-1731-1 Standard Instrument current transformer & JED-1201 Standard Instrument voltage transformer. Class: 1.0

Tolerance: $\pm 1.0\%$

► Depend on the intended use, we have few selections for current transformer & voltage transformer like mold type or dry open type can be choice.

Instrument Transformers

- ♦ JIS C 1731-1 standard for Current Transformer & JEC-1201 standard for Voltage Transformer
- Instrument transformer have few selections depend on the intended use like mold type or dry open type etc.
- Low voltage transformer wiring work is easy & compact.

List of Current Transformers

Max. circuit voltage (V)	Construction	Insulated system	Type Name	Primary current (A)	Secondary current (A)	Rated burden (VA)	Class	Frequency (Hz)	Over current (Times)	weight (kg)
		ABS resin	CPI-1TI 2(17 <i>5</i> 1-331. C	PI-1TR: D	iscontin	ued P	roduction	40	0.5
	Circle Window	Epoxy resin	CR2–5	10~750	5	5	1.0	50/60	40	0.8
		Mould ABS	CR2–15	10~750	5	15	1.0	50/60	40	0.7
Below		coated	CR2-40	20~750	5	40	1.0	50/60	40	0.9
1,150	Square	Epoxy resin	CS1–15	200~750	5	15	1.0	50/60	40	1.2
	Window	coated	CS1–40	200~2,000	5	40	1.0	50/60	40	1.1
	Primary	ABS resin	CPX-1 :2(17.1 <mark>:31</mark> . C	PX-15: Dis	scontin	ued@Pr	oduction	40	0.75
	Winding	Epoxy resin Mould ABS	CM1-15	5~30	* 5	15	1.0	50/60	40	1.8

• Product with mark * can be manufacture by secondary current 1A.

List of Voltage Transformers

Max. circuit voltage (V)	Construction	Insulated system	Type Name	Primary current (A)	Secondary current (A)	Rated burden (VA)	Class	Frequency (Hz)	AC Withstand voltage	weight (kg)
Below				220		15			2kV, 1 min	2.2
230	Winding	opening	PDI-1		110	50	1.0	50/60		3.6
Below 460	туре	type		440		100			3kV, 1 min	6.5
			RP_111N	220	110	50	10	50/60	2kV, 1 min	5.0
		Epoyy		440	110	50	1.0	50/00	3kV, 1 min	5.0
Below	With a fuse	resin	PP_112N	220	110	100	10	50/60	2kV, 1 min	6.0
460	with a fuse	mould	NI = 112N	440	110	100	1.0	50/00	3kV, 1 min	0.0
		mould	DD 112N	220	110	200	1.0	50/60	2kV, 1 min	85
				440	110	200	1.0	50/60	3kV, 1min	0.5

Current Transformers (CT)

Circle Window Type (Below 1,150V)

Insulated	Туре											Prim	ary c	urrent	(A)									Secondary current	Rated Burden
System	Name	/	5	10	15	20	25	30	40	50	60	75	80	100	120	150	200	250	300	400	500	600	750	(A)	(VA)
ABS resin	CPI-1TR	*T	24	15	10	8	6	201	7.1.:	31 <u>3</u> (CPI-	1ŦR	: Đi	scon	tinu	ed P	rodu	ctio	n 1	-	-	-	-	5	10
Ероху	CR2-5	*T	-	10	8	5	4	4	3	2	2	2	-	1	1	1	1	1	1	1	1	1	1	5	5
resin	CR2-15	*T	-	15	10	10	6	5	5	3	4	2	3	2	2	1	1	1	1	1	1	1	1	5	15
coated	CR2-40	*T	-	-	-	10	8	7	5	4	4	4	3	2	2	2	1	1	1	1	1	1	1	5	40

* T = Number of primary conductor penetration.

Primary Current (A)	А	В	С	ΦD	ΦE	F	G
10~200	85	70	57	23	61	70	37
240~400	85	70	55	32	70	77	42
500~750	100	85	57	50	86	93	50

O DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

Current Transformers (CT)

Circle Window Type (Below 1,150V)

		Prima	ry Curre	ent (A)			А	В	С	ΦD	ΦE	F	G
10	15	25	30	50	75	150	100	85	57	25	76	83	45
60	80	120		240	~400		85	70	55	32	70	77	42
20	40	100		20	00		100	85	55	32	70	77	42
		5	500~75	0			100	85	57	50	86	93	50

Primary Current (A)	А	В	С	ΦD	ΦE	F	G
20~400	100	85	72	32	86	93	50
500~750	100	85	57	50	86	93	50

Current Transformers (CT)

Square Window Type (Below 1,150V)

Insulated System	Type Name	Primary Current (A)	Secondary Current (A)	Rated Burden (VA)	А	В	С	D	E	F	G	Н	J	W	t
	CS1-15	200, 300, 400, 500	5	15	137	118	101	75	73	39	50	53	69	55	14
Ероху		600, 750			150	131	114	64	62	33	50	53	69	80	14
resin		200			163	144	130	107	104	55	65	68	84	55	14
ABS		300,400,500			137	118	101	75	73	39	50	53	69	55	14
coated	CS1-40	600, 750	5	40	150	131	114	64	62	33	50	53	69	80	14
		1,000, 1,200, 1,500, 2,000			169	150	133	82	80	42	50	53	69	105	28

• Fitting metal for bus bar also available (Option onerous)

CS1-15, CS1-40

Primary Winding Type

<u>CM1-15</u>

Insulated System	Type Name	Primary Current (A)	Secondary Current (A)	Rated Burden (VA)
Epoxy resin Mould ABS coated	CM1–15	5, 10, 15, 20, 30	5	15

⊖ DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

Voltage Transformers (VT)

For low voltage Instrument use below 460V & 230V

1) Dry Open Type

Туре	Max. Circuit	Primary	Secondary	Rated			Di	mension (mm)	
Name	Voltage (V)	Voltage (V)	Voltage (V)	Burden (VA)	А	В	С	A'	B'	D' (Attachment)
				15	100	90	110	70	75	6×15 cut
	230	220	110	50	120	100	125	74	85	7 × 15 cut
1 וחס				100	135	130	140	84	105	7 × 15 cut
FDI - I				15	100	90	110	70	75	6×15 cut
	460	440	110	50	120	100	125	74	85	7 × 15 cut
				100	135	130	140	84	105	7 × 15 cut

For below 460V

2) Epoxy Resin Mould

	Max. Circuit	Primary	Secondary	Rated		Dir	nension ((mm)	
туре матте	Voltage (V)	Voltage (V)	Voltage (V)	Burden (VA)	А	В	С	F	Н
RP-111N				50	100	90	70	116	135
RP-112N	460	220, 440	110	100	114	90	70	134	160
RP-113N				200	114	100	80	154	162

<u>RP-111N, RP-112N, RP-113N</u>

Item To Specify When make Purchase

- 1) Type name
- 2) Primary current (voltage) / Secondary current (voltage)
- 3) Rated burden (VA)

Instrument Accessory

Direct Current Shunt & Resistor Series

SHUNT

Shunt is possible to combine with mill voltmeter for measuring a large current.

There are 2 types wire connection with insulating stand & bus bar connection can use depending on the magnitude of the current.

FEATURES

High reliability & high performance shunt.
 This product is compliance with:

JIS C-1721-1976 standard.

Class: 1.0

Tolerance: ±1.0%

► Continuous excitation current have set at 80% or less on the rated value.

► We have 2sets voltage terminal DSW type.

► Also have 3sets output terminal DST type for consideration of the heat dissipation and avoid rise in the temperature.

RESISTOR SERIES

External with resistor series is possible to combine with milliampere meter for measuring a large voltage.

FEATURES

- ► High reliability & high performance resistor series.
- ► There are 7 types from DM-1 (750V) until DM-25 (25kV) can use depending on the magnitude of the voltage.
- \blacktriangleright DM-2 \sim 25 will built-in the measures against open resistor.

O DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

DC SHUNTS

For DC Shunts

- Shunts type DS, DSW and DST is compliance with standard JIS (JIS C-1721-1976). Continuous excitation current is 80% or less of the range value.
 Please consultation with us when specification overload capacity or other is different.
- Standard for shunts terminal voltage is 60mV and 100mV, Please refer to diagram at below and specify it.
- Power consumption of shunt is (Current) X (Millivolt) which becomes larger in proportionality of the rated current.
- Please attach especially a large current shunt in consideration of radiation to make the minimize temperature rise of a resistor part.
- Please clamping enough the connection of the electric wire, so that contact resistance becomes small.
- Pay attention not to make a contact between current terminal and voltage terminal electrically to prevent error.

O DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

DS SHUNTS

- Please consultation with us when 5000A is exceeding.
- Please inform us if the load resistance value is less then 900A (by our indication meter type name)
- Please specify the item as below when make order
 - 1) Type Name
 - 2) Input (A)/ output (mV)
 - 3) Option (with or without shunt stand etc.)

DS SHUNTS

For DST Type Shunt

- Standard JIS C 1721-1976.
- Standard shunt terminal voltage is 60mV and 100mV, other voltage also can manufacture please request.
- There are 3 sets output terminal.
- Manufactured this product in consideration of the heat dissipation avoid rise in the temperature.

Please consultation with us when 5000A is exceeded.

RESISTOR SERIES

External with Resistor Series

DM - 1 (Below 1000V)

DM - 1T (Rectifier built in)

DM - 2 (Below 2500V)

DM - 5, 10, 15, 20, 25 (5~25kV)

Type Name	Rated	А	В	С	D	E	F	G	d
DM – 5	5000V	170	120	110	154	170	140	106	4
DM – 10	10kV	220	160	140	194	210	140	106	4
DM – 15	15kV	290	210	200	248	264	190	146	5
DM – 20	20kV	390	260	300	294	310	220	176	5
DM – 25	25kV	500	330	400	356	372	280	236	5

OPTIONS

1. TERMINAL COVER FOR TYPE WIDE ANGLE L SERIES

Terminal Cover for Type ML- 6 and ML- 5

Set into terminal block

	Units F	Required
i ype Name	ML-6	ML-5
ML-110C, YL-110C, XL-110C,		
CL-110C, AL-110C,		1
PL-110NC-12, PBL-110NC-33,	-	I
WL-110NC-12, WVL-110NC-12,		
WL-110NC-33, 34	1	1
WVL-110NC-33, 34	I	I

Terminal Cover for Type ML-3

Set into terminal block

Type Name		Units Required		
		ML-6	ML-5	ML-3
ML-80C, YL-80C, XL-80C,				1
CL-80C, AL-80C, PL-80C-12		-	-	1
WIL 80C 12 22 24	WT-53MC-12	-	1	-
Attach with transducer	WT-53MC-33	1	1	1
Attach with transducer	WT-53MC-34 (1)	1	1	1
WVL-80C-12, 33, 34		-	-	1
Attach with transducer	WVT-53MC-12	-	1	-
	WVT-53MC-33	1	1	1
	WVT-53MC-34 (2)	1	1	1
PL-80C-33, 34		-	-	1
Attach with transducer	PT-53MC-33, 34	1	1	1
 ⁽¹⁾ For WT-53MC-34, use two OA-BCP3 made by OHM. ⁽²⁾ For WVT-53MC-34, use two OA-BCP3 made by OHM. 				

2. TERMINAL COVER FOR TYPE WIDE ANGLE L SERIES

Terminal Cover For Type SL

Set into terminal block

Terminal Cover For Narrow Angle

Typo Namo	Units Required				Units Required		
i ype Name	SL terminal cover	Narrow-angle terminal cover					
SL-110C	1	-					
SL-80C	1	-					
L-65C	-	1					

3. TERMINAL COVER FOR TYPE WIDE ANGLE L SERIES

Multiplier covers for single phase Synchroscope meter (Cover: DMD-50) Lock screw on pillar.

Set into terminal fitting

	Unit Required OA-BCP5 Cover DMD-50				Unit Required		
i ype Name							
DL-110C-12	6	1					
DL-110NC-33	5	-					

* Please specify cover DMD-50 when ordering. The meter shall be shipped with the cover fixed.

4. TERMINAL COVER FOR TYPE NARROW ANGLE METER COMMON

Narrow Angle Terminal Cover

Hz Terminal Cover

Set into terminal fitting

			Narrow Angle	Hz
Type Name	Measurement Element	Mark	Terminal Cover	Terminal Cover
			Units Red	quired
P K-120C/ 100C/ 80C/ 60C	DC Current / Voltage	М		
(Except 120NC1, 100NC)	DC Receiving Indicator Meter	Х		
L K-12C/ 10C/ 8C	AC Receiving Indicator Meter	Y		
(Except 12C, 10C, 8C)	AC Current / Voltage	S		
P D-96	AC Current / Voltage	С	2pcs terminal cover	
(Except P D-96N)	AC Watthour Meter	W	is necessarily for P D-96 Series 2 Pointers type	
F K-7/5	AC Var Meter (balanced)	WVB		
FAK-7C/ 5C	AC Var Meter (unbalanced)	WV		-
PAD-96	Power Factor (balanced)	PB		
	Power Factor (unbalanced)	Р	1	
	Heat Electric Temperature	Н		
	Heat Electric Temperature	HT		
	Revolutions (DC)	Z		
	Revolutions (AC)	V		
PAK-120C/ 100C/ 80C/ 60C LAK-12C/ 10C/ 8C/ 6C	Frequency	А	-	1

5. TERMINAL COVER FOR TYPE NARROW ANGLE PK/ LK INTERGRATED

 Meter Type
 Units Required

 P
 K NC

 L
 K NC

Set into terminal block

6. TERMINAL COVER FOR TYPE F SERIES

Terminal Cover For Type MF

Use specify terminal cover or OA-BCP3 for attachment transducer

Туре	Magaurament Floment	Mork	Units R	equired	
Name	measurement Element	IVIAR K	1 Pointers	2 Pointers	
	DC Current/ Voltage	М	1	2	
	DC Receiving Indicator Meter	Х			
	AC Receiving Indicator Meter	Y			
	AC Current/ Voltage	С		2	
	AC Watthour Meter	W			
F – 17 F – 15 F – 10	AC Var Meter (balanced)	WVB			
	AC Var Meter (unbalanced)	WV			
	Power Factor (balanced)	PB			
	Power Factor (unbalanced)	Р			
	Frequency	A			
	Heat Electric Temperature	Н			
	Heat Electric Temperature	HT			
	Revolutions (DC)	Z			
	Revolutions (AC)	V			

7. TERMINAL COVER FOR TYPE PWD – 96

Terminal Cover For Tye PWD – 96

Please use nut to lock the meter stud.

Narrow Angle Terminal Cover

		Maaguramant Element	Mork	Unit	Required	
	Type Name		IVIAI K	Terminal Cover PWD-96	Narrow Angle Te	erminal Cover
Ρ	D-96N-	Power	W		1 Pointer	2 Pointers
		Reactive Power	WV	1		
		Power Factor (balanced)	Р	I	-	-
		Power Factor (unbalanced)	PB			
Ρ	D-96	Power	W			
		Reactive Power	WV		1	1
		Power Factor (balanced)	Р	-	I	I
		Power Factor (unbalanced)	PB			

Use specify terminal cover or OA-BCP3 for attachment transducer

8. TERMINAL COVER FOR TYPE EL SE

Terminal Cover For Type EL

Lock screw on pillar.

	Moocurement Element	Mark	Terminal Cover Type EL
Type Name	Measurement Element	Walk	Units Required
Wide Angle Meter Relay	DC Current/ Voltage	М	
EL-110C	DC Receiving Indicator Meter	Х	
EP Series Normal Angle Meter Relay	AC Receiving Indicator Meter	Y	
(All-in-one Type Ralay Box)	AC Current/ Voltage	S	
EP-100NC/ 120NC	AC Current/ Voltage	С	
EK Series Normal Angle Meter Relay	AC Watthour Meter	W	
(All-in-one Type Relay Box)	AC Var Meter (balanced)	WVB	
EK-12NC	AC Var Meter (unbalanced)	WV	1
	Power Factor (balanced)	PB	
	Power Factor (unbalanced)	Р	
	Frequency	Α	
	Heat Electric Temperature	Н	
	Heat Electric Temperature	HT	
	Revolutions (DC)	Z	
	Revolutions (AC)	V	

9. TERMINAL COVER FOR TYPE DM – 61

<u>Terminal Cover For Type DM – 61</u>

Attached Relay Box	Terminal Cover Type DM – 61
Type Name	Units Required
DM – 61	1

Lock screw on pillar.

* Please use EP/ EK series normal angle attached relay box for DM-61 terminal cover.

10. TERMINAL COVER FOR TYPE EF SERIES

Terminal Cover For EF Serise

Type Name	Measurement Element	Mark	Terminal Cover For EF Series
			Units Required
EF – 17	DC Current/ Voltage	М	
EF – 15	DC Receiving Indicator Meter	Х	
	AC Receiving Indicator Meter	Y	
	AC Current/ Voltage	S	
	AC Current/ Voltage	С	
	AC Watthour Meter	W	
	AC Var Meter (balanced)	WVB	
	AC Var Meter (unbalanced)	WV	1
	Power Factor (balanced)	PB	
	Power Factor (unbalanced)	Р	
	Frequency	А	
	Heat Electric Temperature	Н	
	Heat Electric Temperature	HT	
	Revolutions (DC)	Z	
	Revolutions (AC)	V	
БТЕ	45	1	4

RTF – 15	-	1
RTF – 10	-	1

11. TERMINAL COVER FOR HIGHEST (LOWEST) INDICATOR METER

Terminal Cover MRL

Set into terminal fitting

Type Name	Measurement Element	Mark	Terminal cover for MRL
Highest (Lowest)	DC Current/ Voltage	М	2
Indicator Meter	DC Receiving Indicator Meter	Х	
	AC Receiving Indicator Meter	Y	
RL-110CH,	AC Current/ Voltage	S	
110CL, 110CHL	AC Current/ Voltage	С	
	AC Watthour Meter	W	
RL-80CH, 80CL,	AC Var Meter (balanced)	WVB	2 addition for
80CHL	AC Var Meter (unbalanced)	WV	electromagnetism return
	Power Factor (balanced)	PB	2 addition for
	Power Factor (unbalanced)	Р	Aux. Power Supply
	Frequency (Except PAK, LAK)	Α	
	Heat Electric Temperature	Н	
	Heat Electric Temperature	HT	
	Revolutions (DC)	Z	
	Revolutions (AC)	V	

* Please Use specify terminal cover or OA-BCP3 for attachment transducer

12. TERMINAL COVER FOR HIGHEST (LOWEST) INDICATOR (ALARM CONTACT)

Terminal Cover ERL

Lock by screw

Type Name	Measurement Element	Mark	Terminal cover for ERL
Highest (Lowest)	DC Current/ Voltage	М	
Indicator Meter	DC Receiving Indicator Meter	Х	
(Alarm Contact)	AC Receiving Indicator Meter	Y	
	AC Current/ Voltage	S	
ERL-110C-H,	AC Current/ Voltage	С	
110C-L, 110C-HL	AC Watthour Meter	W	
	AC Var Meter (balanced)	WVB	
	AC Var Meter (unbalanced)	WV	1
	Power Factor (balanced)	PB	
	Power Factor (unbalanced)	Р	
	Frequency (Except PAK, LAK)	А	
	Heat Electric Temperature	Н	
	Heat Electric Temperature	HT	
	Revolutions (DC)	Z	
	Revolutions (AC)	V	

* Please Use specify terminal cover or OA-BCP3 for attachment transducer

13. TERMINAL COVER FOR MAX. DEMAND AMMETER

Set into terminal fitting

Type Name	Terminal Cover For Narrow Angle Units Required
Max. Demand Ammeter	1
BRL – 110CH	
Max. Demand Ammeter	2
(With warning contact)	2

TERMINAL COVER FOR AUXILIARY 14. СТ

Accessory CT Type	Units Required
	Terminal Cover For MR-CTN
MR – CTN	1

Please use accessory CT cover for Accessory CT, MR-CTN.

15. ATTACHMENT TRANSDUCER TERMINAL COVER

Set into terminal fitting

Terminal Cover for T-83M

Attackment Transducer	Units required			
Attachment Transducer	OA-BCP3	T-83 terminal cover		
A(V)T-62M	4	-		
W(WV, P, PB)T-62M	6	-		
PT-63M	8	-		
DM-63(H, L)	10	-		
DM-63(HL, HH, LL)	16	-		
W(WV, P, PB)T-64M-12	6	-		
W(WV, P, PB)T-64M-34	11	-		
PT-64M-34	10	-		
-T-83M-	-	1		

* Please Use specify terminal cover or OA-BCP3 for attachment transducer

16. SERIES RESISTOR TERMINAL COVER

Туро	Units Required			
Type	OA-BCP3	OA-BCP5		
DM – 1	2	-		
DM – 2	-	3		
DM – 1T	4	-		
DM – 41	-	2		

Set into terminal fitting

DAIICHI ELECTRONICS CO., LTD
 http://www.daiichi-ele.co.jp
 Electrical Indicating Meter Catalog e-99-024/-

Square Share Meter BRL & RL series is same scale as square share meter

§ Wide Angle METER §

STANDARD DIVOSION OF LANCET-SHAPED POINTER

L series

PK series

MODEL	L-65C PK-60C, 80C, 100C LK-8C, 10C BRL-110CH Instant Meter		RL-80C PK-120C LK-12C F-10	
MAX. SCALE VALUE	SCALE DIVISION DIAGRAM	DIV.	SCALE DIVISION DIAGRAM	DIV.
1	0 2 4 6 8 10 _	20	0 2 4 6 8 10 <u>1</u> 1+ + + + + + + + + + + + + + + + + + +	20
1.5	0 ^{*1} 5 10 15 	30	0 5 10 15 	30
2	$\begin{matrix} 0 & 5 & 10 & 15 & 20 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{matrix}$	20	0 ^{*2} 5101520	40
2.5	$\begin{smallmatrix} 0 & 5 & 10 & 15 & 20 & 25 \\ I_{\underline{1111}} \\ I_{\underline{11111}} \\ I_{\underline{111111}} \\ I_{\underline{111111}} \\ I_{\underline{111111}} \\ I_{\underline{111111}} \\ I_{\underline{111111}} \\ I_{\underline{111111}} \\ I_{\underline{1111111}} \\ I_{\underline{1111111}} \\ I_{\underline{111111111} \\ I_{\underline{1111111111111} \\ I_{\underline{1111111111111111111} \\ I_{1$	25	0 5 10 15 20 25	25
3	0 10 20 30	30	0 10 20 30 <u></u>	30
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	0 ^{*2} 10203040	40
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25
6	0 20 40 60 	30	0 20 40 60 II	30
7.5	0 20 40 60 75 <u> </u>	15	0 ^{*3} 20406075	37.5
8	0 20 40 60 80 <u> </u>	16	0 ^{*6} 20406080	40
9	0 30 60 90 _1	18	0 ^{*7} 306090	45

§ Wide Angle METER §

	LK series	F series	s F series	
MODEL	RL-110C BRL-110CH Utility meter		F–15, 17 Note) 4-digit scale of 2T L–110C not manufactural L–80C EL–110C	' is ble.
MAX. SCALE VALUE	SCALE DIVISION DIAGRAM	DIV.	SCALE DIVISION DIAGRAM	DIV.
1	0 ^{*2} 2 4 6 8 10	50	0 ^{*2} 246810	50
1.5	0 5 10 15 1 <u>11</u> 111111111111111111	30	0 ^{*8} 51015 	75
2	0 ^{*2} 5 10 15 20	40	0 5 10 15 20 <u>ddddd</u> dddddddddddddd	40
2.5	0 5 10 15 20 25	50	0 5 10 15 20 25 	50
3	0 10 20 30 <u></u>	30	0 *8 5 10 15 20 25 30	60
4	*2 0 10 20 30 40	40	0 10 20 30 40 I <u>m</u> tuuluuluuluuluuluuluul	40
5	0 10 20 30 40 50	50	0 10 20 30 40 50 I <u>mpe</u> lantadantadantadantad	50
6	0 20 40 60 I I I	30	0 ^{*8} 10 20 30 40 50 60	60
7.5	0 20 40 60 75 I <u></u> tuuluutuuluutuuluutul	37.5	+110 & 1-80: 37.5 DIVISION *9 0 20 40 60 75 http://www.analandon.anal	75
8	0 20 40 60 80 I <u></u> IIIIIII	40	0 20 40 60 80 I <u>uu</u> tuuluutuuluutuuluutuul	40
9	0 30 60 90 Juujuujuuluutuuluutuuluul	45	*5 0 20 40 60 80 90 []]	45

 DAIICHI ELECTRONICS CO., LTD. http://www.daiichi-ele.co.jp

 $Electrical\ indicating\ meter\ Catalog\ e\textbf{-99-024/-}$

§ Wide Angle METER §

STANDARD DIVOSION OF KNIFE-EDGE POINTER

MODEL	PK-60C, 80C, 100C LK- 8C, 10C FK- 5C,		PK-120C LK- 12C FK- 7C	
MAX SCALE VALUE	SCALE DIVISION DIAGRAM	DIV.	SCALE DIVISION DIAGRAM	DIV.
1		50		50
1.5	0 5 10 15 1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1	30		75
2	0 5 10 15 20 	40	0 5 10 15 20 	40
2.5	$0 \qquad 5 \qquad 10 \qquad 15 \qquad 20 \qquad 25 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	50		50
3	0 10 20 30 1111 111 111 111 111	30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60
4	0 10 20 30 40	40	0 10 20 30 40	80
5	0 10 20 30 40 50	50		50
6	0 20 40 60 	30	0 10 20 30 40 50 60	60
7.5	0 20 60 60 75	37.5		75
8	0 20 40 60 80	40	0 20 40 60 80	80
9	0 30 60 90	45	0 30 60 90	45

- ► Division line part of _____ is omitted for moving iron type meter.
- ► For scale extended meter, red color line and numbers of extended part.
- ► Have a consultation with us for +/- meter, notation of max. scale value, multiple scale meter, etc.
- ▶ *1, becomes 15 divisions for scale extended ammeter PK-60C, PK-80C and LK-8C.
- ▶ *2, becomes 20 divisions for scale extended ammeter PK-120C, LK-12C, F-10, 15, 17, RL-80C and RL-110C.
- ▶ *3, becomes 15 divisions for scale extended ammeter PK-120C, LK-12C, F-10, 15, 17 and RL-80C.
- ▶ *4, becomes 25 divisions for scale extended ammeter RL-110C.
- ▶ *5, seal numbers: 0, 30, 60, 90 for type meter F-15, and 17.
- ▶ *6, becomes 16 divisions for scale extended ammeter PK-120C, LK-12C, F-10, RL-80C.
- ▶ *7, becomes 18 divisions for scale extended ammeter PK-120C, LK-12C, F-10, RL-80C.
- ▶ *8, becomes 30 divisions for scale extended ammeter F-15, 17.
- ▶ *9, becomes 37.5 divisions for scale extended ammeter F-15, 17.