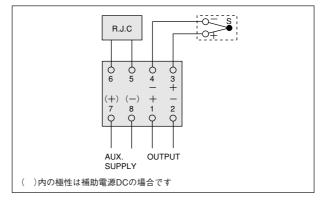
熱電温度トランスデューサ HTP1-

■用途


JISに基づく各種熱電対の熱起電力を入力とし、絶縁して温度 に比例した直流信号に変換します。

■特長

- ●定電圧、定電流出力です。
- ●入力・出力・補助電源・アース相互間耐電圧AC1,500V(50/ 60Hz)1分間を満足します。
- ●インパルス耐電圧は、電気回路一括、外箱間5k V 1.2/50 µs 正負極性 各3回を保証します。
- ●出力線間サージ保護付(2,000A、8/20 µs、正負極性)、出力 を遠方へ直送できます。

HTP1-K8F5 (103(R.J.C.付)×50×121mm/350g)

■結線図 (外形図はP154図1をご覧下さい。)

■仕様一覧

熱電対の種類	標準入力範囲	入力	出 力(負荷抵抗)		補助電	源	共 通 仕 様
В	7~9	1 : 0~200℃ 2 : 0~300℃	1 : DC0~100mV 2 : DC0~ 1 V	(200Ω以上) (200Ω以上)	1: AC100V±10%, 2: AC110V±10%,		許容差: ±0.5% 応答時間: 1秒以下/99%
R	7~9	3 :0~400℃	③ : DC0∼ 5 V	(1kΩ以上)	3: AC200V±10%,	50/60Hz	消費VA:AC電源 3VA
S	7~9	4 : 0~500°C 5 : 0~600°C	4 : DC0~10V 5 : DC1~ 5 V	(2 kΩ以上) (1 kΩ以上)	4: AC220V±10%, 5: DC 24V±10%	50/60Hz	DC電源 4W 質量:AC電源 700g
К	2~8	6 : 0~800℃ 7 : 0~1000℃	A : DC0~ 1 mA B : DC0~ 5 mA	(10kΩ以下) (2kΩ以下)	6: DC 48V±10% 0: 上記以外		DC電源 350g
Е	1~5	8 : 0~1200℃	C : DC0~10mA	(1kΩ以下) (600Ω以下)			
J	1~5	0:上記以外	E : DC1∼ 5 mA	(3kΩ以下)			
Т	1~2		F: DC4~20mA 0: 上記以外	(750Ω以下)			

て下さい。

211

●外部抵抗範囲

●入力配線について

- ●電流出力の開放:電流出力端子は常時開放状態で使用しても問題ありません。なお、出力端子には約25Vの電圧が発生します。
- ●N熱電対についてはご相談ください。

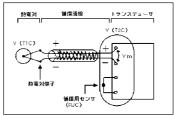
●リニアライザ内蔵

熱電対の熱起電力は温度に比例していません。リニアライザ にて温度に比例した出力に変換します。

●バーンアウト内蔵

熱電対の断線を検知して出力を(+)側に振り切れさせます。 ご指定により(一)側振り切れも製作いたします。

●冷接点補償内蔵


熱電対は、原理上V(T1℃)-V(T2℃)に相当する熱起電力を Vinとして発生します。

補償用センサにてV(T2℃)に相当する熱起電力を補償しま す。なお、冷接点補償は補償用センサを端子部(5・6)に接続 し、その端子温度を入

力端子(3・4)の温度と して補償しています。

●補償導線について

補償導線は熱電対端子と トランスデューサ端子の 温度差を補償するもので す。熱電対の種類により

■ご注文時の指定事項

補償導線の色(材質)が異なりますので、熱電対に合わせて補償

導線をお選び下さい。また接続の際は、十、一の極性を合わせ

外部抵抗値とはトランスデューサに接続される熱電対、補償導

入力配線は信号が微小なため、ノイズ源となる電力線、及び急

峻な電圧・電流変動がある線とはできるだけ離して配線して下

線及び導線などを合わせた往復回路抵抗値です。

外部抵抗範囲は25Ω以下でご使用下さい。